Inflammation in the CNS – understanding various aspects of the pathogenesis of Alzheimer's disease

2021 ◽  
Vol 18 ◽  
Author(s):  
Julia Doroszkiewicz ◽  
Piotr Mroczko ◽  
Agnieszka Kulczyńska-Przybik

: Alzheimer’s disease is a progressive and deadly neurodegenerative disorder, and one of the most common causes of dementia in the world. Current, insufficiently sensitive and specific methods of early diagnosis and monitoring of this disease prompt a search for new tools. Numerous literature data indicate that the pathogenesis of Alzheimer’s disease (AD) is not limited to the neuronal compartment, but involves various immunological mechanisms. Neuroinflammation has been recognized as a very important process in AD pathology. It seems to play pleiotropic roles, both neuroprotective as well as neurodegenerative, in the development of cognitive impairment depending on the stage of the disease. Mounting evidence demonstrates that inflammatory proteins could be considered biomarkers of disease progression. Therefore, the present review summarizes the role of some inflammatory molecules and their potential utility in the detection and monitoring of dementia severity. The paper also provides a valuable insight into new mechanisms leading to the development of dementia, which might be useful in discovering possible anti-inflammatory treatment.

2022 ◽  
Vol 14 ◽  
Author(s):  
Zhen Lan ◽  
Yanting Chen ◽  
Jiali Jin ◽  
Yun Xu ◽  
Xiaolei Zhu

Alzheimer's disease (AD), a heterogeneous neurodegenerative disorder, is the most common cause of dementia accounting for an estimated 60–80% of cases. The pathogenesis of AD remains unclear, and no curative treatment is available so far. Increasing evidence has revealed a vital role of non-coding RNAs (ncRNAs), especially long non-coding RNAs (lncRNAs), in AD. LncRNAs contribute to the pathogenesis of AD via modulating amyloid production, Tau hyperphosphorylation, mitochondrial dysfunction, oxidative stress, synaptic impairment and neuroinflammation. This review describes the biological functions and mechanisms of lncRNAs in AD, indicating that lncRNAs may provide potential therapeutic targets for the diagnosis and treatment of AD.


2020 ◽  
Vol 17 (1) ◽  
pp. 29-43 ◽  
Author(s):  
Patrick Süß ◽  
Johannes C.M. Schlachetzki

: Alzheimer’s Disease (AD) is the most frequent neurodegenerative disorder. Although proteinaceous aggregates of extracellular Amyloid-β (Aβ) and intracellular hyperphosphorylated microtubule- associated tau have long been identified as characteristic neuropathological hallmarks of AD, a disease- modifying therapy against these targets has not been successful. An emerging concept is that microglia, the innate immune cells of the brain, are major players in AD pathogenesis. Microglia are longlived tissue-resident professional phagocytes that survey and rapidly respond to changes in their microenvironment. Subpopulations of microglia cluster around Aβ plaques and adopt a transcriptomic signature specifically linked to neurodegeneration. A plethora of molecules and pathways associated with microglia function and dysfunction has been identified as important players in mediating neurodegeneration. However, whether microglia exert either beneficial or detrimental effects in AD pathology may depend on the disease stage. : In this review, we summarize the current knowledge about the stage-dependent role of microglia in AD, including recent insights from genetic and gene expression profiling studies as well as novel imaging techniques focusing on microglia in human AD pathology and AD mouse models.


2017 ◽  
Vol 376 ◽  
pp. 242-254 ◽  
Author(s):  
Eva Bagyinszky ◽  
Vo Van Giau ◽  
Kyuhwan Shim ◽  
Kyoungho Suk ◽  
Seong Soo A. An ◽  
...  

2021 ◽  
Vol 19 ◽  
Author(s):  
Md. Sahab Uddin ◽  
Md. Tanvir Kabir ◽  
Maroua Jalouli ◽  
Md. Ataur Rahman ◽  
Philippe Jeandet ◽  
...  

: Alzheimer’s disease (AD) is a chronic neurodegenerative disease characterized by the formation of intracellular neurofibrillary tangles (NFTs) and extracellular amyloid plaques. Growing evidence has suggested that AD pathogenesis is not only limited to the neuronal compartment but also strongly interacts with immunological processes in the brain. On the other hand, aggregated and misfolded proteins can bind with pattern recognition receptors located on astroglia and microglia and can in turn induce an innate immune response, characterized by the release of inflammatory mediators, ultimately playing a role in both the severity and the progression of the disease. It has been reported by genome-wide analysis that several genes which elevate the risk for sporadic AD encode for factors controlling the inflammatory response and glial clearance of misfolded proteins. Obesity and systemic inflammation are examples of external factors which may interfere with the immunological mechanisms of the brain and can induce disease progression. In this review, we discussed the mechanisms and essential role of inflammatory signaling pathways in AD pathogenesis. Indeed, interfering with immune processes and modulation of risk factors may lead to future therapeutic or preventive AD approaches.


Life Sciences ◽  
2022 ◽  
pp. 120299
Author(s):  
Mehdi Sanati ◽  
Samaneh Aminyavari ◽  
Amir R. Afshari ◽  
Amirhossein Sahebkar

2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Bruno Alexandre Quadros Gomes ◽  
João Paulo Bastos Silva ◽  
Camila Fernanda Rodrigues Romeiro ◽  
Sávio Monteiro dos Santos ◽  
Caroline Azulay Rodrigues ◽  
...  

Alzheimer’s disease (AD) is a progressive and neurodegenerative disorder of the cortex and hippocampus, which eventually leads to cognitive impairment. Although the etiology of AD remains unclear, the presence ofβ-amyloid (Aβ) peptides in these learning and memory regions is a hallmark of AD. Therefore, the inhibition of Aβpeptide aggregation has been considered the primary therapeutic strategy for AD treatment. Many studies have shown that resveratrol has antioxidant, anti-inflammatory, and neuroprotective properties and can decrease the toxicity and aggregation of Aβpeptides in the hippocampus of AD patients, promote neurogenesis, and prevent hippocampal damage. In addition, the antioxidant activity of resveratrol plays an important role in neuronal differentiation through the activation of silent information regulator-1 (SIRT1). SIRT1 plays a vital role in the growth and differentiation of neurons and prevents the apoptotic death of these neurons by deacetylating and repressing p53 activity; however, the exact mechanisms remain unclear. Resveratrol also has anti-inflammatory effects as it suppresses M1 microglia activation, which is involved in the initiation of neurodegeneration, and promotes Th2 responses by increasing anti-inflammatory cytokines and SIRT1 expression. This review will focus on the antioxidant and anti-inflammatory neuroprotective effects of resveratrol, specifically on its role in SIRT1 and the association with AD pathophysiology.


2011 ◽  
Vol 02 (01) ◽  
pp. 056-061 ◽  
Author(s):  
M Obulesu ◽  
Dowlathabad Muralidhara Rao

ABSTRACTAlzheimer’s disease (AD) is a devastative neurodegenerative disorder which needs adequate studies on effective treatment options. The extracts of plants and their effect on the amelioration of AD symptoms have been extensively studied. This paper summarizes the mechanisms like acetylcholinesterase (AChE) inhibition, modifi cation of monoamines, antiamyloid aggregation effect, and antioxidant activity which are actively entailed in the process of amelioration of AD symptoms. These effects are induced by extracts of a few plants of different origin like Yizhi Jiannao, Moringaoleifera (Drumstick tree), Ginkgo Biloba (Ginkgo/Maidenhair tree), Cassia obtisufolia (Sicklepod), Desmodium gangeticum (Sal Leaved Desmodium), Melissa officinalis (Lemon Balm), and Salvia officinalis (Garden sage, common sage).


2020 ◽  
Vol 18 ◽  
Author(s):  
Jazmín Alarcón-Espósito ◽  
Michael Mallea ◽  
Julio Rodríguez-Lavado

: Alzheimer’s disease (AD) is a chronic, progressive, and fatal neurodegenerative disorder affecting cognition, behavior, and function, being one of the most common causes of mental deterioration in elderly people. Once thought as being just developed because of β amyloid depositions or neurofibrillary Tau tangles, during the last decades, numerous ADrelated targets have been established, the multifactorial nature of AD became evident. In this context, the one drug-one target paradigm has resulted to be inefficient in facing AD and other disorders with complex etiology, opening the field for the emergence of the multitarget approach. In this review, we highlight the recent advances within this area, emphasizing in hybridization tools of well-known chemical scaffolds endowed with pharmacological properties concerning AD, such as curcumin-, resveratrol-, chromone- and indole-. We focus mainly on well stablished and incipient AD therapeutic targets, AChE, BuChE, MAOs, β-amyloid deposition, 5-HT4 and Serotonin transporter, with the aim to shed light about new insights in the AD multitarget therapy.


2020 ◽  
Author(s):  
Tasha R. Womack ◽  
Craig Vollert ◽  
Odochi Nwoko ◽  
Monika Schmitt ◽  
Sagi Montazari ◽  
...  

AbstractAlzheimer’s disease (AD) is a progressive neurodegenerative disorder that is the most common cause of dementia in aged populations. A substantial amount of data demonstrates that chronic neuroinflammation can accelerate neurodegenerative pathologies, while epidemiological and experimental evidence suggests that the use of anti-inflammatory agents may be neuroprotective. In AD, chronic neuroinflammation results in the upregulation of cyclooxygenase and increased production of prostaglandin H2, a precursor for many vasoactive prostanoids. While it is well-established that many prostaglandins can modulate the progression of neurodegenerative disorders, the role of prostacyclin (PGI2) in the brain is poorly understood. We have conducted studies to assess the effect of elevated prostacyclin biosynthesis in a mouse model of AD. Upregulated prostacyclin expression significantly worsened multiple measures associated with amyloid disease pathologies. Mice overexpressing both amyloid and PGI2 exhibited impaired learning and memory and increased anxiety-like behavior compared with non-transgenic and PGI2 control mice. PGI2 overexpression accelerated the development of amyloid accumulation in the brain and selectively increased the production of soluble amyloid-β 42. PGI2 damaged the microvasculature through alterations in vascular length and branching; amyloid expression exacerbated these effects. Our findings demonstrate that chronic prostacyclin expression plays a novel and unexpected role that hastens the development of the AD phenotype.


Sign in / Sign up

Export Citation Format

Share Document