Synthesis of Novel Pyridine Bearing Biologically Active Imidiazolyl, Pyrazolyl, Oxa/thiadiazolyl and Urea Derivatives as Promising Anticancer Agents

2020 ◽  
Vol 17 (1) ◽  
pp. 55-64
Author(s):  
Hend N. Hafez ◽  
Abdel-Rahman B.A. El-Gazzar

Background: A novel series of pyridine containing 1,3,4-oxa/thiadiazol derivatives 4a,b, pyrazole derivatives 5-7, thiazole derivatives 9a,b and 17a-c, urea derivatives 12a-c, imidiazole derivative 16, imidazo[1,2-a]pyridine derivatives 18a, b, tetrazole 19, pyrane 20 and pyridine derivatives 21 has been synthesized. Objective: This research aims to synthesize 6-(Trifluoromethyl)-2-[3-(trifluoromethyl)phenyl] amino nicotinohydrazide 2 and 6-(trifluoromethyl)-2-[3-(trifluoromethyl)phenyl]amino pyridin-3-carboaldhyde 15 as key intermediate for the synthesis of novel pyridine derivatives bearing different heterocyclic rings in order to study the additive effect of this ring toward tumor cell lines. Methods: 6-(Trifluoromethyl)-2-[3-(trifluoromethyl)phenyl]amino nicotinohydrazide 2 was synthesized in a series of synthetic steps and was used as key intermediate for the synthesis of compounds 3-(1,3,4- oxa/thiadiazol-2-yl)-6-(trifluoromethyl)-N-(3- trifluoromethyl) phenyl) pyridin-2-amine 4a,b, (3,5-dimethyl- 1H-pyrazol-1-yl derivatives) [6-(trifluoromethyl)-2-[3- trifluoromethyl) phenyl] amino pyridin-3- yl]methanone 5a,b, 6-8, 9a,b and 12a-c. Also, 6-(trifluoromethyl)-2-[3-(trifluoromethyl)phenyl]amino pyridin-3-carboaldhyde (15) was used as a key intermediate for the synthesis of novel series of pyridine derivatives with different heterocyclic ring (16-21). Results: Structures of the newly synthesized compounds were established by elemental analysis and spectral data. All the synthesized compounds were screened for their in vitro anticancer activity against liver cancer (HepG2), human colon cancer (HT-29) and human breast adenocarcinoma cell lines (MCF-7). Conclusion: All the synthesized compounds were investigated for their in vitro antitumor activity. Compounds 4b, 9a,b and 19 showed higher antitumor activity than the doxorubicin. Interestingly, pyridine with pfluorophenyl urea 12a demonstrated the most potent antitumor activity. The activity of these compounds is strongly dependent on the basic skeleton of the molecules and the nature of the heterocyclic ring attached to the pyridine moiety.

2021 ◽  
Vol 33 (7) ◽  
pp. 1488-1494
Author(s):  
S. Arulmozhi ◽  
G. Sasikumar ◽  
A. Subramani ◽  
A. Sudha ◽  
S.J. Askar Ali

The metal(II) complexes were synthesized by addition of corresponding MCl2 (M = Mn2+, Ni2+, Cu2+ and Zn2+) with 1,2-bis(1H-pyrrol-2-ylmethylene)diazane in methanol. The ligand acts as a bidentate as confirmed from the mass, IR, UV, NMR and EPR spectral studies. The Schiff base ligand forms hexa-coordinated complexes having octahedral geometry for Mn(II), Ni(II), Zn(II) and Cu(II) complexes. The metal complexes showed an excellent antimicrobial activity spectrum in vitro against both Gram-negative (Klebsiella pneumoniae and Acinetobacter baumannii), Gram-positive (Staphylococcus aureus and Enterococcus faecalis) and human pathogenic bacteria isolates. To find the binding affinity with protein BSA kinase, for that molecular docking studies were also carried for all the four synthesized metal(II) complexes. The anticancer activity of the synthesized metal(II) complexes was also screened against the three human tumor cell lines MCF7 human breast adenocarcinoma cell line, CaSki human caucasian cervical epidermoid carcinoma and HCT116 human colon cancer cell lines. The present study showed that Zn(II) complex showed potent inhibition by the ratio of 80% as compared to the inhibition in the normal cells (L-6).


Author(s):  
Rafat Milad Mohareb ◽  
Noha M. Asaad Bagato ◽  
Ibrahim Taha Radwan

Background: Cancer is a disease illustrated by a shift in the controlled mechanisms that control both cell proliferation and differentiation. It is regarded as a prime health problem worldwide, leading cause of human death-rate exceeded only by cardiovascular diseases. Many reported work was concerned with the discovery of new antitumor compounds this encourage us to synthesis new anticancer agents. Objective: In this work, we are aiming to synthesize target molecules from 1,3-dicarbonyl compounds through many heterocyclization reactions. Method: The reaction of either 4-methylaniline (1a) or 1-naphthylamine (1b) with diethyl malonate (2) gave the anilide derivatives 3a and 3b, respectively. The latter products underwent a series of heterocyclization reactions to give the pyridine, pyran andthiazole derivatives which confirmed with the required spectral data. Results: Thein-vitro antitumor evaluations of the newly synthesized products against four cancer cell lines MCF-7, NCI-H460, SF-268 and WI 38 as normal cell line were screened and the data revealed that compounds 11a, 18b, 18c and 20d showed high antitumor activity and 20dindividualize with potential antitumor activity towards cell lines with lowest cytotoxicity effect. Both EGFR and PIM-1 enzyme inhibition were investigated for the compound 20d and his inhibition effect was promising for each enzyme showing IC50=45.67 ng and 553.3 ng for EGFR and PIM-1, respectively. Conclusion: Molecular docking results of compound 20d showed a strong binding interactions on both enzymes, where, good binding modes obtained on case of EGFR, which closely similar to the binding mode of standard Erlotinib. While, 20d showed complete superimposition binding interactions with VRV-cocrystallized ligand of PIM-1 that may expounds the in-vitro antitumor activity.


2018 ◽  
Vol 68 (4) ◽  
pp. 471-483 ◽  
Author(s):  
Kristina Pavić ◽  
Zrinka Rajić ◽  
Zvonimir Mlinarić ◽  
Lidija Uzelac ◽  
Marijeta Kralj ◽  
...  

Abstract In the current paper, we describe the design, synthesis and antiproliferative screening of novel chloroquine derivatives with a quinoline core linked to a hydroxy or halogen amine through a flexible aminobutyl chain and urea spacer. Synthetic pathway leading to chloroquine urea derivatives 4-10 includes two crucial steps: i) synthesis of chloroquine benzotriazolide 3 and ii) formation of urea derivatives through the reaction of compound 3 with the corresponding amine. Testing of antiproliferative activity against four human cancer cell lines revealed that chloroquine urea derivatives 9 and 10 with aromatic moieties show activity at micromolar concentrations. Therefore, these molecules represent interesting lead compounds that might provide an insight into the design of new anticancer agents.


Author(s):  
Rafat M. Mohareb ◽  
Yara R. Milad ◽  
Bahaa M. Mostafa ◽  
Reem A. El-Ansary

Background: Benzo[d]imidazoles are highly biologically active, in addition, they are considered as a class of heterocyclic compounds with many pharmaceutical applications. Objective: We are aiming in this work to synthesize target molecules not only possess anti-tumor activities but also kinase inhibitors. The target molecules were obtained starting from the benzo[d]imidazole derivatives followed by their heterocyclization reactions to produce anticancer target molecules. Methods: The 1-(1H-benzo[d]imidazol-2-yl)propan-2-one (3) and the ethyl 2-(1H-benzo[d]imidazol-2-yl)acetate (16) were used as the key starting material which reacted with salicylaldehyde to give the corresponding benzo[4,5]imidazo[1,2-a]quinoline derivatives. On the other hand, both of them were reacted with different reagents to give thiophene, pyran and benzo[4,5]imidazo[1,2-c]pyrimidine derivatives. The synthesized compounds were evaluated against the six cancer cell lines A549, HT-29, MKN-45, U87MG, and SMMC7721 and H460 together with inhibitions toward tyrosine kinases, c-Met kinase and prostate cancer cell line PC-3 were recorded using the standard MTT assay in vitro, with foretinib as the positive control. Results: Most of the synthesized compounds exhibited high inhibitions toward the tested cancer cell lines. In addition, tyrosine and Pim1 kinases inhibitions were performed for the most active compounds where variation of substituent through the aryl ring and heterocyclic ring afforded compounds with high activities. Our analysis showed that there is a strong correlation between structure of compound and substituents of target molecules. Conclusion: Our present research proved that the synthesized heterocyclic compounds with varieties of substituents has a strong impact through the activity of compounds. The evaluations through different cell lines and tyrosine kinases indicated that the compounds were excellent candidates as anticancer agents. This could encourage doing further research within this field for the building of compounds with high inhibitions.


Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 1162
Author(s):  
Serhii Holota ◽  
Sergiy Komykhov ◽  
Stepan Sysak ◽  
Andrzej Gzella ◽  
Andriy Cherkas ◽  
...  

The present paper is devoted to the search for drug-like molecules with anticancer properties using the thiazolo[3,2-b][1,2,4]triazole-6-one scaffold. A series of 24 novel thiazolo-[3,2-b][1,2,4]triazole-6-ones with 5-aryl(heteryl)idene- and 5-aminomethylidene-moieties has been synthesized employing three-component and three-stage synthetic protocols. A mixture of Z/E-isomers was obtained in solution for the synthesized 5-aminomethylidene-thiazolo[3,2-b]-[1,2,4]triazole-6-ones. The compounds have been studied for their antitumor activity in the NCI 60 lines screen. Some compounds present excellent anticancer properties at 10 μM. Derivatives 2h and 2i were the most active against cancer cell lines without causing toxicity to normal somatic (HEK293) cells. A preliminary SAR study had been performed for the synthesized compounds.


Author(s):  
Rafat M. Mohareb ◽  
Nadia Y. Megally Abdo ◽  
Rehab A. Ibrahim ◽  
Eman M. Samir

Background: 1,3-Diones are versatile reagents used for many heterocyclic transformations. Among such groups of compounds, cyclohexane-1,3-dione is widely used in organic synthesis to produce biologically active compounds. Objective: In this work, target molecules were synthesized from tetrahydrobenzo[b]thiophen-3- carboxamide derivative with different substituents, and their structure-activity relationships were discussed in detail. Method: Cyclohexane-1,3-dione underwent different multi-component reactions to produce fused thiophene, thiazole, coumarin, pyran, and pyridine derivatives. The anti-proliferative activity of the newly synthesized compounds toward the six cancer cell lines, namely A549, H460, HT-29, MKN-45, U87MG, and SMMC-7721 was studied. In addition, inhibitions of the most active compounds toward cancer cell lines classified according to the disease were also studied. Furthermore, Pan Assay Interference compounds (PAINS) of the selected compounds were analyzed, along with the c-Met inhibitions. Results: Anti-proliferative evaluations were performed for all of the synthesized compounds, in which the varieties of substituents through the aryl ring and the heterocyclic ring afforded compounds with high activities. Inhibition activity against the cancer cell lines classified according to the disease, c-Met, and PAINS of the synthesized compounds were measured. Conclusion: Compounds 3, 13a, 13b, 14a, 16f, 17a, 28, 30a, and 31were the most cytotoxic compounds toward the six cancer cell lines. Inhibition toward cancer cell lines classified according to the disease showed that, in most cases, the presence of the electronegative CN and or Cl groups within the molecule was responsible for its high activity.


2018 ◽  
Vol 18 (8) ◽  
pp. 1156-1162
Author(s):  
Da-You Ma ◽  
Li-Chao Zhang ◽  
Kun-Jian Peng ◽  
Jiang Zeng ◽  
Li-Jun Liu ◽  
...  

Background: The heptaprotective flavonolignan silibinin and dehydrosilibinin have exhibited moderate antiproliferative activities toward many cancer cell lines. Considering of the nontoxic profile of these natural products, chemical modification to enhance the anticancer potentials is promising. Method: A series of 7-O-aminoalkyl-2,3-dehydrosilibinin derivatives were synthesized and evaluated for their antiproliferative activities against several cancer cell lines. Results: A number of the synthesized dehydrosilibinin derivatives exhibited greatly enhanced potency with 50% growth inhibition at low micromolar concentrations. Structure activity study indicated that the distance between N and 7-O on the side chain has a limited influence on the antiproliferative activity, while the presence of a morpholino group decreases the antiproliferative activities dramatically. Flow cytometry based assays on human colon cancer HCT116 cells revealed that 6a and 6c, two of the most potent derivatives, effectively arrested the cell cycle in the G2 phase and stimulated cell apoptosis. Conclusion: Our findings suggest that attaching an appropriate tertiary amino alkyl side chain through 7-Oalkylation on 2,3-dehydrosilibinin, would be a viable strategy for the development of silibinin derivatives as anticancer agents.


Author(s):  
Neha V. Bhilare ◽  
Pratibha B. Auti ◽  
Vinayak S. Marulkar ◽  
Vilas J. Pise

: Thiophenes are one among the abundantly found heterocyclic ring systems in many biologically active compounds. Moreover various substituted thiophenes exert numerous pharmacological actions on account of their isosteric resemblance with compounds of natural origin thus rendering them with diverse actions like antibacterial, antifungal, antiviral, anti-inflammatory, analgesic, antiallergic, hypotensives etc.. In this review we specifically explore the chemotherapeutic potential of variety of structures consisting of thiophene scaffolds as prospective anticancer agents.


2019 ◽  
Vol 16 (6) ◽  
pp. 462-467
Author(s):  
Songtao Li ◽  
Hongling Zhao ◽  
Zhifeng Yin ◽  
Shuhua Deng ◽  
Yang Gao ◽  
...  

A series of new phenanthrene-based tylophorine derivatives (PBTs) were synthesized in good yield and their structures were characterized by 1H-NMR spectroscopy and ESI MS. In vitro antitumor activity of these compounds against five human carcinoma cell lines, including HCT116 (colorectal), BGC-823 (gastric), HepG-2 (hepatic), Hela (cervical) and H460 (lung) cells, was evaluated by MTT assay. Among these PBTs, compound 6b showed the highest antitumor activities against HCT116 and HepG-2 cell lines with IC50 values of 6.1 and 6.4 μM, respectively, which were comparable to that of adriamycin hydrochloride. The structure-activity relationship of these compounds was also discussed based on the results of their antitumor activity.


2020 ◽  
Vol 17 (5) ◽  
pp. 640-654
Author(s):  
Hamidreza Akrami ◽  
Bibi Fatemeh Mirjalili ◽  
Omidreza Firuzi ◽  
Azadeh Hekmat ◽  
Ali Akbar Saboury ◽  
...  

Background: Chromene and anilinopyrimidine heterocyclics are attractive anticancer compounds that have inspired many researchers to design novel derivatives bearing improved anticancer activity. Methods: A series of pyrimidine-fused benzo[f]chromene derivatives 6a-x were synthesized as anticancer hybrids of 1H-benzo[f]chromenes and anilinopyrimidines. The inhibitory activity of the synthesized compounds 6a-x against cell viability of human chronic myelogenous leukemia (K562), human acute lymphoblastic leukemia (MOLT-4) and human breast adenocarcinoma (MCF-7) cell lines was evaluated using MTT assay. The interaction of the most promising compound with calf-thymus DNA was also studied using spectrometric titrations and Circular Dichroism (CD) spectroscopy. Results: Most compounds showed promising activity against tested cell lines. Among them, 2,4- dimethoxyanilino derivative 6g exhibited the best profile of activity against tested cell lines (IC50s = 1.6-6.1 μM) with no toxicity against NIH3T3 normal cell (IC50 >200 μM). The spectrometric studies exhibited that compound 6g binds to DNA strongly and may change DNA conformation significantly, presumably via a groove binding mechanism. Conclusion: The results of this study suggest that the prototype compound 6g can be considered as a novel lead compound for the design and discovery of novel anticancer agents.


Sign in / Sign up

Export Citation Format

Share Document