Anti-HER2 VHH Targeted Fluorescent Liposome as Bimodal Nanoparticle for Drug Delivery and Optical Imaging

Author(s):  
Sepideh Khaleghi ◽  
Fatemeh Rahbarizadeh ◽  
Shahryar Khoshtinat Nikkhoi

Objective: The aim of this study was to formulate fluorescent-labeled targeted immunoliposome to visualize the delivery and distribution of drugs in real-time. Methods: In this study, fluorescent-labeled liposomes were decorated with anti-HER2 VHH or Herceptin to improve the monitoring of intracellular drug delivery and tumor cell tracking with minimal side effects. The conjugation efficiency of antibodies was analyzed by SDS-PAGE silver staining. In addition, the physicochemical characterization of liposomes was performed using DLS and TEM. Finally, confocal microscopy visualized nanoparticles in the target cells. Results: Quantitative and qualitative methods characterized the intracellular uptake of 110±10 nm particles with near 70% conjugation efficiency. In addition, live-cell trafficking during hours of incubation was monitored by wide-field microscopy imaging. The results show that the fluorescent-labeled nanoparticles can specifically bind to HER2-positive breast cancer with minimal off-target delivery. Conclusion: This kind of nanoparticles can have several applications in personalized medicine, especially drug delivery and real-time visualization of cancer therapy. Moreover, this method also can be applied in the targeted delivery of contrast agents in imaging and thermotherapy.

2019 ◽  
Author(s):  
Alena Rudkouskaya ◽  
Nattawut Sinsuebphon ◽  
Marien Ochoa ◽  
Joe E. Mazurkiewicz ◽  
Xavier Intes ◽  
...  

AbstractFollowing an ever-increased focus on personalized medicine, there is a continuing need to develop preclinical molecular imaging modalities to guide the development and optimization of targeted therapies. To date, non-invasive quantitative imaging modalities that can comprehensively assess simultaneous cellular drug delivery efficacy and therapeutic response are lacking. In this regard, Near-Infrared (NIR) Macroscopic Fluorescence Lifetime Förster Resonance Energy Transfer (MFLI-FRET) imaging offers a unique method to robustly quantify receptor-ligand engagement in vivo and subsequent intracellular internalization, which is critical to assess the delivery efficacy of targeted therapeutics. However, implementation of multiplexing optical imaging with FRET in vivo is challenging to achieve due to spectral crowding and cross-contamination. Herein, we report on a strategy that relies on a dark quencher that enables simultaneous assessment of receptor-ligand engagement and tumor metabolism in intact live mice. First, we establish that IRDye QC-1 (QC-1) is an effective NIR dark acceptor for the FRET-induced quenching of donor Alexa Fluor 700 (AF700) using in vitro NIR FLI microscopy and in vivo wide-field MFLI imaging. Second, we report on simultaneous in vivo imaging of the metabolic probe IRDye 800CW 2-deoxyglucose (2-DG) and MFLI-FRET imaging of NIR-labeled transferrin FRET pair (Tf-AF700/Tf-QC-1) uptake in tumors. Such multiplexed imaging revealed an inverse relationship between 2-DG uptake and Tf intracellular delivery, suggesting that 2-DG signal may predict the efficacy of intracellular targeted delivery. Overall, our methodology enables for the first time simultaneous non-invasive monitoring of intracellular drug delivery and metabolic response in preclinical studies.


Biomolecules ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 927
Author(s):  
Sebas D. Pronk ◽  
Erik Schooten ◽  
Jurgen Heinen ◽  
Esra Helfrich ◽  
Sabrina Oliveira ◽  
...  

Antibody-drug conjugates (ADCs) are currently used for the targeted delivery of drugs to diseased cells, but intracellular drug delivery and therefore efficacy may be suboptimal because of the large size, slow internalization and ineffective intracellular trafficking of the antibody. Using a phage display method selecting internalizing phages only, we developed internalizing single domain antibodies (sdAbs) with high binding affinity to rat PDGFRβ, a receptor involved in different types of diseases. We demonstrate that these constructs have different characteristics with respect to internalization rates but all traffic to lysosomes. To compare their efficacy in targeted drug delivery, we conjugated the sdAbs to a cytotoxic drug. The conjugates showed improved cytotoxicity correlating to their internalization speed. The efficacy of the conjugates was inhibited in the presence of vacuolin-1, an inhibitor of lysosomal maturation, suggesting lysosomal trafficking is needed for efficient drug release. In conclusion, sdAb constructs with different internalization rates can be designed against the same target, and sdAbs with a high internalization rate induce more cell killing than sdAbs with a lower internalization rate in vitro. Even though the overall efficacy should also be tested in vivo, sdAbs are particularly interesting formats to be explored to obtain different internalization rates.


2021 ◽  
Vol 11 (1-s) ◽  
pp. 139-146
Author(s):  
Vasu Deva Reddy Matta

From last thirty years, solid lipid nanoparticles (SLNs) gain much importance as drug delivery vehicle for enhanced delivery of the drugs, proteins, nutraceuticals and cosmetics. SLNs defined as a submicron size range nanoparticle with below 1000 nm and are mainly composed of lipids and surfactants, capable of incorporating both lipophilic and hydrophilic drugs. SLNs also used as controlled systems, targeted delivery and altered therapeutic efficacy purpose. A wide variety of methods such as double emulsion, solvent evaporation, ultra sonication, high-pressure homogenization and microemulsion used for SLNs production. This review provides the significance of SLNs in drug delivery with highlighting on selection of excipients, drug release mechanism, principles and limitations associated with their physicochemical and surface morphological characterization. Keywords: Solid lipid nanoparticles, enhanced delivery, preparation, characterization, application.


Pharmaceutics ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 243 ◽  
Author(s):  
Franklin Afinjuomo ◽  
Thomas G. Barclay ◽  
Ankit Parikh ◽  
Yunmei Song ◽  
Rosa Chung ◽  
...  

The propensity of monocytes to migrate into sites of mycobacterium tuberculosis (TB) infection and then become infected themselves makes them potential targets for delivery of drugs intracellularly to the tubercle bacilli reservoir. Conventional TB drugs are less effective because of poor intracellular delivery to this bacterial sanctuary. This study highlights the potential of using semicrystalline delta inulin particles that are readily internalised by monocytes for a monocyte-based drug delivery system. Pyrazinoic acid was successfully attached covalently to the delta inulin particles via a labile linker. The formation of new conjugate and amide bond was confirmed using zeta potential, Proton Nuclear Magnetic Resonance (1HNMR) and Fourier transform infrared spectroscopy (FTIR). Scanning electron microscopy (SEM) confirmed that no significant change in size after conjugation which is an important parameter for monocyte targeting. Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) were used to establish the change in thermal properties. The analysis of in-vitro release demonstrated pH-triggered drug cleavage off the delta inulin particles that followed a first-order kinetic process. The efficient targeting ability of the conjugate for RAW 264.7 monocytic cells was supported by cellular uptake studies. Overall, our finding confirmed that semicrystalline delta inulin particles (MPI) can be modified covalently with drugs and such conjugates allow intracellular drug delivery and uptake into monocytes, making this system potentially useful for the treatment of TB.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Zhizhong Zhang ◽  
Tianyang Zheng ◽  
Rong Zhu

Abstract The ability to precisely deliver molecules into single cells while maintaining good cell viability is of great importance to applications in therapeutics, diagnostics, and drug delivery as it is an advancement toward the promise of personalized medicine. This paper reports a single-cell individualized electroporation method with real-time impedance monitoring to improve cell perforation efficiency and cell viability using a microelectrode array chip. The microchip contains a plurality of sextupole-electrode units patterned in an array, which are used to perform in situ electroporation and real-time impedance monitoring on single cells. The dynamic recovery processes of single cells under electroporation are tracked in real time via impedance measurement, which provide detailed transient cell states and facilitate understanding the whole recovery process at the level of single cells. We define single-cell impedance indicators to characterize cell perforation efficiency and cell viability, which are used to optimize electroporation. By applying the proposed electroporation method to different cell lines, including human cancer cell lines and normal human cell lines individually, optimum stimuli are determined for these cells, by which high transfection levels of enhanced green fluorescent protein (EGFP) plasmid into cells are achieved. The results validate the effectiveness of the proposed single-cell individualized electroporation/transfection method and demonstrate promising potential in applications of cell reprogramming, induced pluripotent stem cells, adoptive cell therapy, and intracellular drug delivery technology.


2020 ◽  
Vol 21 (4) ◽  
pp. 406-415
Author(s):  
Phuong H-Lien Tran ◽  
Thao Truong-Dinh Tran

Various strategies for the use of zein for controlled drug release have been investigated and reported in the literature, especially engineering strategies for using zein conjugates to enhance oral bioavailability and targeted delivery, which has attracted interest in recent research. Although still limited, the ability to fabricate self-assembling nanoparticles loaded with molecules of interest offering functional groups for potential conjugation could yield zein-based conjugates with promise as materials for drug delivery. In the current review, recent studies on zein-based conjugates with outstanding features are discussed based on the various types of conjugation. The key physicochemical characterization methods for the chemical conjugation and identification of zein are also summarized. Further opportunities to develop zein-based materials through conjugation will provide promising alternative formulations for a number of drug candidates.


Nanoscale ◽  
2015 ◽  
Vol 7 (30) ◽  
pp. 12843-12850 ◽  
Author(s):  
Lili Ren ◽  
Shizhen Chen ◽  
Haidong Li ◽  
Zhiying Zhang ◽  
Chaohui Ye ◽  
...  

The theranostic liposomal drug delivery system can act as an effective nanoplatform integrating targeted drug delivery, controlled release, MRI real-time monitoring and diagnostic functions.


2019 ◽  
Vol 20 (4) ◽  
pp. 283-291 ◽  
Author(s):  
Hany A. Abdel Samie ◽  
Mohd Saeed ◽  
Syed Mohd Faisal ◽  
Mohd Adnan Kausar ◽  
Mohammad A. Kamal

Background: Nanotechnology-based therapies are emerging as a promising new anticancer approach. Early clinical studies suggest that nanoparticle-based therapeutics can show enhanced efficacy while reducing side effects minimal, owing to targeted delivery and active intracellular uptake. Methods: To overcome the problems of gene and drug delivery, nanotechnology based delivery system gained interest in the last two decades. Encouraging results from Nano formulation based drug delivery systems revealed that these emerging restoratives can efficiently lead to more effective, targeted, selective and efficacious delivery of chemotherapeutic agents to the affected target cells. Results: Nanotechnology not only inhibits targeted gene products in patients with cancer, but also taught us valuable lessons regarding appropriate dosages and route of administrations. Besides, nanotechnology based therapeutics holds remarkable potential as an effective drug delivery system. We critically highlight the recent findings on nanotechnology mediated therapeutics strategies to combat hepatocellular carcinoma and discuss how nanotechnology platform can have enhanced anticancer effects compared with the parent therapeutic agents they contain. Conclusion: In this review, we discussed the key challenges, recent findings and future perspective in the development of effective nanotechnology-based cancer therapeutics. The emphasis here is focused on nanotechnology-based therapies that are likely to affect clinical investigations and their implications for advancing the treatment of patients with hepatocellular carcinoma.


Author(s):  
Meena K. S. ◽  
Sonia K ◽  
Alamelu Bai S

In order to develop the efficiency and the specificity of anticancer drug delivery, we have designed an innovative nanocarrier. The nanocarrier system comprises of a multifunctional graphene oxide nanoparticle-based drug delivery system (GO-CS-M-DOX) as a novel platform for intracellular drug delivery of doxorubicin (DOX). Firstly, graphene oxide (GO) was synthesized by hummer’s method whose surface was functionalized by chitosan (CS) in order to obtain a more precise drug delivery, the system was then decorated with mannose (M). Further conjugation of an anti-cancer drug doxorubicin to the nanocarrier system resulted in GO-CS-M-DOX drug delivery system. The resultant conjugate was characterized for its physio-chemical properties and its biocompatibility was evaluated via hemolysis assay. The drug entrapment efficiency is as high as 90% and in vitro release studies of DOX under pH 5.3 is significantly higher than that under pH 7.4. The anticancer activity of the synthesized drug delivery system was studied by 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) assay against MCF-7 cell line. These results stated that the pH dependent multifunctional doxorubicin- chitosan functionalized graphene oxide based nanocarrier system, could lead to a promising and potential platform for intracellular delivery and cytotoxicity activity for variety of anticancer drugs.   


Sign in / Sign up

Export Citation Format

Share Document