In Silico Molecular Interaction Studies of Chitosan Polymer with Aromatase Inhibitor: Leads to Letrozole Nanoparticles for the Treatment of Breast Cancer

Author(s):  
Keerti Mishra ◽  
Sant Kumar Verma ◽  
Pooja Ratre ◽  
Laxmi Banjare ◽  
Abhishek Jain ◽  
...  

Background: It takes lot more studies to evaluate the molecular interaction of nanoparticles with the drug, their drug delivery potential and release kinetics. Thus, we have taken in silico and in vitro approaches into the account for the evaluation of drug delivery ability of the chitosan nanoparticles. Objective: The present work was aimed to develop the interaction of chitosan nanoparticles with appropriate aromatase inhibitors using in-silico tools. Further, synthesis and characterization of chitosan nanoparticles having optimal binding energy and affinity between drug and polymer in terms of size, encapsulation efficiency was carried out. Methods: In current study, molecular docking was used to map the molecular interactions and estimation of binding energy involved between the nanoparticles and the drug molecules in silico. Letrozole is used as a model cytotoxic agent currently being used clinically, hence Letrozole loaded chitosan nanoparticles were formulated and characterized using photomicroscope, particle size analyzer, scanning electron microscope and fourier transform infra-red spectroscopy. Results: Letrozole had the second highest binding affinity within the core of chitosan with MolDock (-102.470) and Rerank (-81.084) scores. Further, it was investigated that formulated nanoparticles were having superior drug loading capacity and high encapsulation efficiency. In vitro drug release study exhibited prolonged release of the drug from chitosan nanoparticles. Conclusion: Results obtained from the in silico and in vitro studies suggest that Letrozole loaded nanoparticles are ideal for breast cancer treatment.

Nanomedicine ◽  
2020 ◽  
Vol 15 (5) ◽  
pp. 489-509
Author(s):  
Dong Shen ◽  
Yan Shen ◽  
Qian Chen ◽  
Bin Huang ◽  
Yedong Mi ◽  
...  

Aim: Micelles are one of the most promising nanoplatforms for drug delivery, and here, cholesterol-conjugated polyoxyethylene sorbitol oleate (CPSO) micelles have been fabricated for the pulmonary delivery of paclitaxel (PTX). Materials & methods: PTX-CPSO micelles were prepared by a dialysis-ultrasonic method, and a single-factor experiment with a Box–Behnken design was conducted to optimize the formulation. Furthermore, intracellular and phagocytosis escape studies of the optimized formulation were performed on A549 and NR8383 cells. Results: The optimal micelles exhibited satisfactory encapsulation efficiency (78.48 ± 2.36%) and drug loading (17.06 ± 1.71%). In vitro studies showed enhanced CPSO micelle A549 cellular uptake and their ability to escape macrophages. Conclusion: PTX-CPSO micelles could be a promising system for pulmonary targeting by intravenous administration.


2021 ◽  
Author(s):  
Reza Davarnejad ◽  
Kiyana Layeghy ◽  
Meysam Soleymani ◽  
Arvin Ayazi

Abstract Quercetin, a natural polyphenolic compound, has attracted much attention due to its great therapeutic potential against various types of diseases. But clinical applications of quercetin are limited due to its poor aqueous solubility and low bioavailability. The main purpose of this research was to evaluate the therapeutic potential of quercetin-loaded Pluronic F127 (PF127)/Tween 80 mixed nanomicelles as a passive targeted drug delivery system for breast cancer therapy. To this end, quercetin-loaded mixed nanomicelles with different mass ratios of drug:PF127:Tween 80 were prepared by the thin-film hydration method. The highest drug loading and entrapment efficiency were obtained to be 2.3% and 98.0%, respectively, for mixed micelles with drug:PF127:Tween 80 ratio of 1:40:15. The physical interactions of quercetin with PF127 and Tween 80 at optimized ratio was investigated by XRD and FTIR analyses. The mean hydrodynamic size and surface charge of prepared nanomicelles, measured by DLS and zeta potential analyses, were 22.1 nm and -7.63 mV, respectively. The results of in-vitro drug release experiments showed that, the mixed micellar system has a prolong and sustained release behavior compared to the solution of free quercetin. Moreover, the in-vitro cytotoxicity studies of quercetin-loaded mixed nanomicelles on breast cancer cells (MCF-7) revealed that, the encapsulated drug have a lower IC50 value (8.9 µg/mL) compared to the free drug (49.2 µg/mL). Our results suggest that, quercetin-loaded mixed nanomicelles can be considered as a promising drug delivery system with prolonged release and potentiated cytotoxicity against breast cancer cells.


2020 ◽  
Author(s):  
Hang Chen ◽  
Sifan Huang ◽  
Heyi Wang ◽  
Xinmei Chen ◽  
Haiyan Zhang ◽  
...  

Abstract Background: Combination of the prodrug technique with an albumin nanodrug-loaded system is a novel promising approach for cancer treatment. However, the long-lasting and far-reaching challenge for the treatment of cancers lies in how to construct the albumin nanometer drug delivery system with lead compounds and their derivatives. Results: In this study, we reported the preparation of injectable albumin nanoparticles (NPs) with a high and quantitative drug loading system based on the NabTM technology of paclitaxel palmitate (PTX-PA). Our experimental study on drug tissue distribution in vivo demonstrated that the paclitaxel palmitate albumin NPs (Nab-PTX-PA) remained in the tumor for a longer time post injection. Compared with saline and Abraxane® (nanoparticle albumin-bound (nab)-paclitaxel), intravenous injection of Nab-PTX-PA not only reduced the toxicity of the drug in normal organs and increased the body weight of the animals but maintained sustained release of paclitaxel (PTX) in the tumor, thereby displaying an excellent antitumor activity. Blood routine analysis showed that Nab-PTX-PA had fewer adverse effects or less toxicity to the normal organsand more importantly it inhibited tumor cell proliferation more effectively as compared with commercial Abraxane®.Conclusions: This carrier strategy for small molecule drugs is based on naturally evolved interactions between LCFAs(Long Chain Fatty Acids) and HSA(human serum albumin), demonstrated here for PTX. Nab-PTX-PA shows higher maximum tolerated doses and increased efficacy in vivo in breast cancer models, as compared to Abraxane for FDA-approved clinical formulations. This novel injectable Nab-PTX-PA platform has great potential as an effective drug delivery system in the treatment of breast cancer.


Author(s):  
Muhammad Wahab Amjad ◽  
Nawaf Mohamed Alotaibi

Millions of people are affected globally by alzheimer’s disease and it is regarded as a dangerous progressive medical and socio-economic burden. The drug delivery to brain is hindered due to the presence of blood brain barrier. Nanoparticle mediated drug delivery is a promising approach in this regard. Chitosan is a hydrophilic polysaccharide polymer of N-acetylglycosamine and glucosamine. Owing to its biodegradability, nontoxicity and biocompatibility it is regarded as a safe excipient. The aim of the study was to fabricate donepezil-loaded sustained release chitosan nanoparticles as a simple way to deliver nano-drugs to the brain. The nanoparticles were fabricated using ionic gelation method using different concentrations of Sodium tripolyphosphate (TPP) and chitosan. The fabricated nanoparticles were assessed for particle size, zeta potential, encapsulation efficiency and in vitro drug release. The effect of sonication time on the particle size of nanoparticles was also studied. The nanoparticles exhibited mean particle size (between 135-1487 nm) and zeta potential (between +3.9-+38mV) depending on chitosan and TPP concentration used. The rise in the sonication time from 25 to 125 sec exhibited a decrease in particle size. The encapsulation efficiency was found to be in the range of 39.1-74.4%. Sustained and slow release of donepezil at a constant rate was exhibited from nanoparticles. The nanoparticles show potential to deliver donepezil to brain with enhanced encapsulation efficiency.


2015 ◽  
Vol 6 (1) ◽  
Author(s):  
Hai Wang ◽  
Pranay Agarwal ◽  
Shuting Zhao ◽  
Jianhua Yu ◽  
Xiongbin Lu ◽  
...  

Abstract Nanoparticles have demonstrated great potential for enhancing drug delivery. However, the low drug encapsulation efficiency at high drug-to-nanoparticle feeding ratios and minimal drug loading content in nanoparticle at any feeding ratios are major hurdles to their widespread applications. Here we report a robust eukaryotic cell-like hybrid nanoplatform (EukaCell) for encapsulation of theranostic agents (doxorubicin and indocyanine green). The EukaCell consists of a phospholipid membrane, a cytoskeleton-like mesoporous silica matrix and a nucleus-like fullerene core. At high drug-to-nanoparticle feeding ratios (for example, 1:0.5), the encapsulation efficiency and loading content can be improved by 58 and 21 times, respectively, compared with conventional silica nanoparticles. Moreover, release of the encapsulated drug can be precisely controlled via dosing near infrared laser irradiation. Ultimately, the ultra-high (up to ∼87%) loading content renders augmented anticancer capacity both in vitro and in vivo. Our EukaCell is valuable for drug delivery to fight against cancer and potentially other diseases.


2019 ◽  
Vol 2019 ◽  
pp. 1-6 ◽  
Author(s):  
Hui Guo ◽  
Faping Li ◽  
Heping Qiu ◽  
Qi Zheng ◽  
Chao Yang ◽  
...  

Chitosan (CS), the second most abundant polysaccharide in nature, has been widely developed as a nanoscopic drug delivery vehicle due to its intriguing characteristics. In this work, a positively charged CS-based nanogel was designed and synthesized to inhibit the proliferation of breast cancer cell lines. The model drug of 10-hydroxycamptothecin (HCPT) was entrapped into the core via a facile diffusion to form CS/HCPT. The characteristics of CS/HCPT were evaluated by assessing particle size, drug loading content, and drug loading efficiency. Furthermore, cell internalization, cytotoxicity, and apoptosis of CS/HCPT were also investigated in vitro. The present investigation indicated that the positively charged CS-based nanogel could be potentially used as a promising drug delivery system.


2019 ◽  
Vol 9 (1) ◽  
pp. 6-8
Author(s):  
Rajkumari Thagele

Cancer has become a solemn threat to the life of human beings universally. Various strategies are available to steadfastness cancer; however they are not so effective owed to their serious side effects, noxious effect to healthy cells and non- specificity to cancer cells targeting. To tenacity above facts we try to deed inherent characters of cancer cells. HA was used as a targeting agent for drug delivery to breast cancer cells. In this work nanoparticles were equipped using chitosan and sodium tripolyphosphate encapsulating methotrexate. Methotrexate (Mtx) a folic acid antagonist that inhibits dihydrofolatereductase (DHFR) and blocks conversion of dihydrofolic acid (DHFA) to tetrahydrofolic acid (THFA) of the cell cycle. Chitosan anchored nanoparticles were prepared by ionotropic gelation method by means of sodium tripolyphosphate and evalauted for in-vitro drug release study with dialysis membrane. Result depicts that drug releases from chitosan nanoparticles in sustained manner over a prolonged episode of time from the NPs as the medium acidity enhanced at the target site, not in plasma. In conclusion, chitosan anchored nanoparticles of MTX could be well thought-out as probable candidate for drug delivery in the treatment of breast cancer. Keywords: Breast cancer, Methotrexate, Chitosan, TPP and Nanoparticles.


2020 ◽  
Vol 26 ◽  
Author(s):  
John Chen ◽  
Andrew Martin ◽  
Warren H. Finlay

Background: Many drugs are delivered intranasally for local or systemic effect, typically in the form of droplets or aerosols. Because of the high cost of in vivo studies, drug developers and researchers often turn to in vitro or in silico testing when first evaluating the behavior and properties of intranasal drug delivery devices and formulations. Recent advances in manufacturing and computer technologies have allowed for increasingly realistic and sophisticated in vitro and in silico reconstructions of the human nasal airways. Objective: To perform a summary of advances in understanding of intranasal drug delivery based on recent in vitro and in silico studies. Conclusion: The turbinates are a common target for local drug delivery applications, and while nasal sprays are able to reach this region, there is currently no broad consensus across the in vitro and in silico literature concerning optimal parameters for device design, formulation properties and patient technique which would maximize turbinate deposition. Nebulizers are able to more easily target the turbinates, but come with the disadvantage of significant lung deposition. Targeting of the olfactory region of the nasal cavity has been explored for potential treatment of central nervous system conditions. Conventional intranasal devices, such as nasal sprays and nebulizers, deliver very little dose to the olfactory region. Recent progress in our understanding of intranasal delivery will be useful in the development of the next generation of intranasal drug delivery devices.


2020 ◽  
Vol 13 ◽  
Author(s):  
Selin Yılmaz ◽  
Çiğdem İçhedef ◽  
Kadriye Buşra Karatay ◽  
Serap Teksöz

Backgorund: Superparamagnetic iron oxide nanoparticles (SPIONs) have been extensively used for targeted drug delivery systems due to their unique magnetic properties. Objective: In this study, it’s aimed to develop a novel targeted 99mTc radiolabeled polymeric drug delivery system for Gemcitabine (GEM). Methods: Gemcitabine, an anticancer agent, was encapsulated into polymer nanoparticles (PLGA) together with iron oxide nanoparticles via double emulsion technique and then labeled with 99mTc. SPIONs were synthesized by reduction–coprecipitation method and encapsulated with oleic acid for surface modification. Size distribution and the morphology of the synthesized nanoparticles were caharacterized by dynamic light scattering(DLS)and scanning electron microscopy(SEM), respectively. Radiolabeling yield of SPION-PLGAGEM nanoparticles were determined via Thin Layer Radio Chromatography (TLRC). Cytotoxicity of GEM loaded SPION-PLGA were investigated on MDA-MB-231 and MCF7 breast cancer cells in vitro. Results: SEM images displayed that the average size of the drug-free nanoparticles was 40 nm and the size of the drug-loaded nanoparticles was 50 nm. The diameter of nanoparticles were determined as 366.6 nm by DLS, while zeta potential was found as-29 mV. SPION was successfully coated with PLGA, which was confirmed by FTIR. GEM encapsulation efficiency of SPION-PLGA was calculated as 4±0.16 % by means of HPLC. Radiolabeling yield of SPION-PLGA-GEM nanoparticles were determined as 97.8±1.75 % via TLRC. Cytotoxicity of GEM loaded SPION-PLGA were investigated on MDA-MB-231 and MCF7 breast cancer cells. SPION-PLGA-GEM showed high uptake on MCF-7, whilst incorporation rate was increased for both cell lines which external magnetic field application. Conclusion: 99mTc labeled SPION-PLGA nanoparticles loaded with GEM may overcome some of the obstacles in anti-cancer drug delivery because of their appropriate size, non-toxic, and supermagnetic characteristics.


Sign in / Sign up

Export Citation Format

Share Document