Synthesis of Silica Based Nanoparticles against the Proliferation of Human Prostate Cancer

Author(s):  
Irem M. Durmus ◽  
Ilyas Deveci ◽  
Serdar Karakurt

Background: Prostate cancer(PCa) has the second-highest morbidity and mortality rates in men. Possessing facile surface chemistry and unique optical properties make silica nanoparticles(SiO2-NPs) promising cancer therapy materials. Objective: This study aimed to investigate the effects of SiO2-NPs and their derivatives, including SiNP-NH2, SiNP-Cl, and SiNP-SH against PCa and clarify their molecular mechanism on cell death, gene, and protein expressions. Methods: Following the synthesis and derivation of SiO2-NPs, their characterization was carried out using TEM, DLS, BET, and FT-IR. Cytotoxic properties of the compounds were investigated against different human cancerous cells, including HUH-7, A549, DLD-1, HeLa, NCI-H295R, and PC-3, as well as human healthy epithelium cell line PNT1A. Results: SiNP-NH2, SiNP-Cl, and SiNP-SH dose-dependently inhibited the proliferation of PC-3 cells with an IC50 value as 55.46 µg/mL, 55.09 µg/mL and 72.89 µg/mL, respectively.SiNP-SH significantly(p<0.0001) inhibited metastasis and invasion of PC-3 cells(20.4% and 46.7%, respectively), and significantly(p<0.0001) increased early apoptosis(32.3%) when compared with non-treated cells. Protein and mRNA expressions of BcL-2, Bax, caspase-3, caspase-9, caspase-12, p53, Smad-4, Kras, and Nf-ĸB were also altered following the treatment of SiO2-NPs and its derivatives. Conclusion: Our results demonstrated that –SH functioned SiO2-NPs can prevent the proliferation of human PCa by increasing apoptosis by upregulating gene and protein expression of p53(TP53) as well as caspase-3, caspase-9, and caspase-12 in the apoptotic pathway. Besides, the increased level of Smad-4 has also implicated the decreased cell proliferation. Hence, low sized SiNP-SH nanoparticles might be a suitable candidate for the treatment of human PCa.

2003 ◽  
Vol 284 (5) ◽  
pp. G821-G829 ◽  
Author(s):  
Wenlin Deng ◽  
De-An Wang ◽  
Elvira Gosmanova ◽  
Leonard R. Johnson ◽  
Gabor Tigyi

We previously showed ( Gastroenterology 123: 206–216, 2002) that lysophosphatidic acid (LPA) protects and rescues rat intestinal epithelial cells (IEC-6) from apoptosis. Here, we provide evidence for the LPA-elicited inhibition of the mitochondrial apoptotic pathway leading to attenuation of caspase-3 activation. Pretreatment of IEC-6 cells with LPA inhibited campothecin-induced caspase-9 and caspase-3 activation and DNA fragmentation. A caspase-9 inhibitor peptide mimicked the LPA-elicited antiapoptotic activity. LPA elicited ERK1/ERK2 and PKB/Akt phosphorylation. The LPA-elicited antiapoptotic activity and inhibition of caspase-9 activity were abrogated by pertussis toxin, PD 98059, wortmannin, and LY 294002. LPA reduced cytochrome c release from mitochondria and prevented activation of caspase-9. LPA prevented translocation of Bax from cytosol to mitochondria and increased the expression of the antiapoptotic Bcl-2 mRNA and protein. LPA had no effect on Bcl-xl, Bad, and Bak mRNA or protein expression. These data indicate that LPA protects IEC-6 cells from camptothecin-induced apoptosis through Gi-coupled inhibition of caspase-3 activation mediated by the attenuation of caspase-9 activation due to diminished cytochrome c release, involving upregulation of Bcl-2 protein expression and prevention of Bax translocation.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Xu Yan ◽  
Jinwen Tian ◽  
Hongjin Wu ◽  
Yuna Liu ◽  
Jianxun Ren ◽  
...  

Aim. To investigate the effect of Ginsenoside Rb1 (GS-Rb1) on hypoxia/ischemia (H/I) injury in cardiomyocytesin vitroand the mitochondrial apoptotic pathway mediated mechanism.Methods. Neonatal rat cardiomyocytes (NRCMs) for the H/I groups were kept in DMEM without glucose and serum, and were placed into a hypoxic jar for 24 h. GS-Rb1 at concentrations from 2.5 to 40 µM was given during hypoxic period for 24 h. NRCMs injury was determined by MTT and lactate dehydrogenase (LDH) leakage assay. Cell apoptosis, ROS accumulation, and mitochondrial membrane potential (MMP) were assessed by flow cytometry. Cytosolic translocation of mitochondrial cytochrome c and Bcl-2 family proteins were determined by Western blot. Caspase-3 and caspase-9 activities were determined by the assay kit.Results. GS-Rb1 significantly reduced cell death and LDH leakage induced by H/I. It also reduced H/I induced NRCMs apoptosis induced by H/I, in accordance with a minimal reactive oxygen species (ROS) burst. Moreover, GS-Rb1 markedly decreased the translocation of cytochrome c from the mitochondria to the cytosol, increased the Bcl-2/ Bax ratio, and preserved mitochondrial transmembrane potential (ΔΨm). Its administration also inhibited activities of caspase-9 and caspase-3.Conclusion. Administration of GS-Rb1 during H/Iin vitrois involved in cardioprotection by inhibiting apoptosis, which may be due to inhibition of the mitochondrial apoptotic pathway.


2018 ◽  
Vol 8 (3) ◽  
pp. 208-216 ◽  
Author(s):  
Andrea Breglia ◽  
Grazia Maria Virzì ◽  
Silvia Pastori ◽  
Alessandra Brocca ◽  
Massimo de Cal ◽  
...  

Background: Cardiorenal syndrome type 1 (CRS type 1) is characterized by a rapid worsening of cardiac function leading to acute kidney injury (AKI). Its pathophysiology is complex and not completely understood. In this study, we examined the role of apoptosis and the caspase pathways involved. Material and Methods: We enrolled 40 acute heart failure (AHF) patients, 11 of whom developed AKI characterizing CRS type 1. We exposed the human cell line U937 to plasma from the CRS type 1 and AHF groups and then we evaluated apoptotic activity by annexin-V evaluation, determination of caspase-3, -8 and -9 levels, and BAX, BAD, and FAS gene expression. Results: We observed significant upregulation of apoptosis in monocytes exposed to CRS type 1 plasma compared to AHF, with increased levels of caspase-3 (p < 0.01), caspase-9 (p < 0.01), and caspase-8 (p < 0.03) showing activation of both intrinsic and extrinsic pathways. Furthermore, monocytes exposed to CRS type 1 plasma had increased gene expression of BAX and BAD (intrinsic pathways) (p = 0.010 for both). Furthermore, strong significant correlations between the caspase-9 levels and BAD and BAX gene expression were observed (Spearman ρ = – 0.76, p = 0.011, and ρ = – 0.72, p = 0.011). Conclusion: CRS type 1 induces dual apoptotic pathway activation in monocytes; the two pathways converged on caspase-3. Many factors may induce activation of both intrinsic and extrinsic apoptotic pathways in CRS type 1 patients, such as upregulation of proinflammatory cytokines and hypoxia/ischemia. Further investigations are necessary to corroborate the present findings, and to better understand the pathophysiological mechanism and consequent therapeutic and prognostic implications for CRS type 1.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4988-4988
Author(s):  
Yang Yan ◽  
Ma Jing ◽  
Tian Jinju ◽  
Chen Liyi ◽  
Songmei Yin ◽  
...  

Abstract Background: Platelets are versatile cells and play important roles in hemostasis/thrombosis, inflammation, and atherosclerosis. The pathogenesis of cardiovascular diseases (CVDs) is linked to platelet hyperactivity which is considered an independent risk factor for CVDs. Platelets are critical for promoting the progression of CVDs, and platelet apoptosis have been reported to be involved in platelet activation. Anthocyanins are major phytochemicals abundant in plant food and have been shown to play a protective role against CVDs. Our previous studies demonstrated that anthocyanins from plant food significantly inhibited platelet activation, adhesion, aggregation and granule secretion, as well as attenuated thrombus growth at both arterial and venous shear stresses in vitro and in vivo, however, the effects of anthocyanin on platelet apoptosis and its mechanisms have not been explored. In the present study, we examined whether anthocyanin Cyanidin-3-glucoside (Cy-3-g) affect platelet apoptosis and the BCL-2/BCL-XL intrinsic apoptotic pathway. Methods: Cy-3-g, the predominant bioactive compound of anthocyanin preparations, was obtained from Polyphenol AS Company in Norway.Purified gel-filtered platelets from healthy volunteers were incubated at 37oC for 40 minutes with different concentrations of Cy-3-g (0.5、5、50μM) or PBS buffer as a control. the activated platelets were triggered with 0.5U thrombin for 15min to induce apoptosis. Mitochondria membrane potential (Δψm) and membrane phospholipid phosphatidylserine (PS) exposure in both activated and resting platelets were assessed by flow cytometry. Cytochrome C release, activation of caspase-3, caspase-8, caspase-9, cleavage of gelsolin, the levels of anti-apoptotic BCL-2 family proteins such as BCL-2, BCL-XL and proapoptotic BCL-2 family proteins Bax, Bak, Bad, Bid and tBid in both activated and resting platelets were measured by western blotting. Results: Cy-3-g at 5μM and 50μM directly induced significant ΔΨm dissipation in activated platelets dose dependently. Correspondingly, 50μM Cy-3-g increased cytochrome C release compared to control. The expression of pro-caspase-8 and pro-caspase-9 decreased, activation of caspase-3, caspase-8 and caspase-9 was induced in activated platelets in both 5μM and 50μM Cy-3-g groups. Both PS exposure and the cleavage of gelsolin increased in activated platelets, however these effects were only observed at Cy-3-g doses as high as 50μM. Cy-3-g did not induce the above changes in resting platelets. The intrinsic apoptotic pathway was initiated by Cy-3-g treatment in activated platelets; Cy-3-g significantly inhibited the expression of BCL-2, BCL-XL and increased the levels of Bax, Bak, Bad and Bid in activated platelets dose dependently. No significant difference was observed in resting platelets. Conclusions: Our data demonstrate for the first time that purified anthocyanin Cy-3-g directly accelerated apoptosis in activated platelets via the BCL-2/BCL-XL pathway. Anthocyanins may possess therapeutic potential for patients suffering from thrombotic conditions. Disclosures No relevant conflicts of interest to declare.


2020 ◽  
Vol 295 (11) ◽  
pp. 3590-3600 ◽  
Author(s):  
Ilana Braunstein ◽  
Rotem Engelman ◽  
Ofer Yitzhaki ◽  
Tamar Ziv ◽  
Erwan Galardon ◽  
...  

Hydrogen sulfide has been implicated in a large number of physiological processes including cell survival and death, encouraging research into its mechanisms of action and therapeutic potential. Results from recent studies suggest that the cellular effects of hydrogen sulfide are mediated in part by sulfane sulfur species, including persulfides and polysulfides. In the present study, we investigated the apoptosis-modulating effects of polysulfides, especially on the caspase cascade, which mediates the intrinsic apoptotic pathway. Biochemical analyses revealed that organic or synthetic polysulfides strongly and rapidly inhibit the enzymatic activity of caspase-3, a major effector protease in apoptosis. We attributed the caspase-3 inhibition to persulfidation of its catalytic cysteine. In apoptotically stimulated HeLa cells, short-term exposure to polysulfides triggered the persulfidation and deactivation of cleaved caspase-3. These effects were antagonized by the thioredoxin/thioredoxin reductase system (Trx/TrxR). Trx/TrxR restored the activity of polysulfide-inactivated caspase-3 in vitro, and TrxR inhibition potentiated polysulfide-mediated suppression of caspase-3 activity in situ. We further found that under conditions of low TrxR activity, early cell exposure to polysulfides leads to enhanced persulfidation of initiator caspase-9 and decreases apoptosis. Notably, we show that the proenzymes procaspase-3 and -9 are basally persulfidated in resting (unstimulated) cells and become depersulfidated during their processing and activation. Inhibition of TrxR attenuated the depersulfidation and activation of caspase-9. Taken together, our results reveal that polysulfides target the caspase-9/3 cascade and thereby suppress cancer cell apoptosis, and highlight the role of Trx/TrxR-mediated depersulfidation in enabling caspase activation.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3471-3471
Author(s):  
Amy Johnson ◽  
Lisa Smith ◽  
Jiuxiang Zhu ◽  
Nyla Heerema ◽  
Sara Guster ◽  
...  

Abstract Chronic lymphocytic leukemia (CLL) is an incurable adult leukemia characterized by disrupted apoptosis. While the majority of patients with CLL are asymptomatic at diagnosis, most progress and require therapy. Identification of new targets and therapeutic agents is therefore a high priority for the treatment of CLL. Synthetic chemistry yielded derivatives of the COX-2 inhibitor, celecoxib, with increased ability to induce apoptosis in the 1–10 μ M range in prostate cancer cells, a similar proposed mechanism of action, and increased in vivo activity in a murine prostate cancer xenograft model. Based upon these data, a Rapid Access to Intervention Development (RAID) proposal is underway to generate OSU03012 for clinical studies in prostate cancer. In addition, we are examining the biologic effects of these new agents in primary CLL cells and lymphoblastic cell lines, showing a novel mechanism of cell killing independent of caspase activation and bcl-2 over-expression. To determine the in vitro activity against CLL cells, 11 CLL patient PBMCs were incubated in various concentrations of OSU03012. The LC50 at 24 hrs was 7.12μM and decreased to 5.45μM at 72 hrs. We show both early (annexin-V positive) and late (both annexin-V/PI positive) apoptosis concurrent with loss of mitochondrial membrane potential typical of apoptosis. These data suggest OSU03012 is highly cytotoxic toward CLL cells in vitro at doses well below those attainable without toxicity in a murine model. Additionally, we show that OSU03012 mediates apoptosis by activation of the intrinsic, mitochondrial pathway of apoptosis but also activates alternative caspase independent cell death pathways. CLL cells from 8 patients were incubated in 10μM OSU03012 for 24 hrs and assessed for caspase-3 and PARP. Immunoblots reveal a dose dependent increase in active caspase-3 concurrent with a decrease in the pro-form. This occurred concurrently with the appearance of the 85 kD cleaved product of PARP that is a known downstream target of caspase-3. In the same 8 patient lysates we saw no change in the inactive pro-form of caspase-8, but consistent processing of caspase-9. These data suggest that OSU03012 in part utilizes the intrinsic pathway of apoptosis to promote CLL cell death. Incubation of CLL cells with z-VAD-fmk and OSU03012 did not abrogate cell death, but eliminated processing of caspase-9, caspase-3 and PARP, suggesting that this agent also activates caspase independent mechanisms of cell death. Given the caspase dependent and independent pathways utilized by OSU03012, we assessed the dependence of cell death on bcl-2 expression. Here we show that bcl-2 over-expression in the 697 lymphoblastic cell line greatly diminishes the apoptosis observed with fludarabine, but potent apoptosis is equally observed with OSU03012 compared to the empty vector cell line. Furthermore, in the bcl-2 over-expressing cell line, caspase-3 and PARP cleavage was not observed despite equivalent apoptosis supporting further multiple mechanisms of cell killing induced by OSU03012. In summary, OSU03012 is an oral bioavailable therapeutic agent that has potent in vitro activity against primary CLL cells. This cytotoxicity is mediated by both caspase dependent and independent pathways and can overcome bcl-2 over-expression. These data provide support for further investigation of the mechanism of action of OSU03012 in CLL cells and performance of early Phase I studies in CLL as part of the RAID process.


2020 ◽  
Vol 20 ◽  
pp. 03003
Author(s):  
Eka Yudha Rahman ◽  
Mulyohadi Ali ◽  
Basuki Bambang Purnomo ◽  
Nia Kania

This study aimed to predict the proapoptosis effect of E. longifolia active compounds on prostate cancer by in silico analysis. Protein data such as BCL-2 (GI: 2506216), Caspase 3 (GI: 6978605), Caspase 8(GI: 11560103), data quassinoid (ID: 5459060 and chantin (ID: 97176) were collected from GenBank of NCBI. Protein BCL-2 collected from NCBI compare with Protein Data Bank (PDB) and UNIPROT. The docking process was carried out using software HEX 8.0. to compute the binding affinity between ligands (active compounds of Pasak Bumi) and protein target. The interaction between quassinoid and chantin was strongest and stable against caspase-9, indicating that the active ingredient in E. longifolia triggered caspase-9 activity after activation of BH3 domains in Bcl-2 in prostate cancer. The low energy binding between quassinoid and chantin with caspase-3 indicates the interaction between the active ingredients is not strong with caspase-3. E. longifolia active ingredients that are potentially used in the treatment of prostate cancer are quassinoid and chantin by inducing apoptotic mechanisms via both extrinsic and intrinsic pathways. The combination of active ingredients of E. longifolia that is quassinoid and chantin can be used as a strategy of prostate cancer therapy both through extrinsic and intrinsic pathways.


2003 ◽  
Vol 71 (8) ◽  
pp. 4642-4646 ◽  
Author(s):  
Xin-He Lai ◽  
Anders Sjöstedt

ABSTRACT Francisella tularensis is a facultative intracellular bacterium capable of inducing apoptosis in murine macrophages. Here we analyzed the pathway leading to apoptosis in the murine macrophage-like cell line J774A.1 after infection with F. tularensis strain LVS (named LVS for live vaccine strain). We obtained evidence that the infection affected the mitochondria of the macrophages, since it induced release of the mitochondrial molecule cytochrome c into the cytosol and changed the potential over the mitochondrial membrane. Moreover, activation of caspase 9 and the executioner caspase 3 was also observed in the LVS-infected J774A.1 macrophages. The activated caspase 3 degraded poly(ADP-ribose) polymerase (PARP). All of these events were observed within 9 to 12 h after the initiation of infection, and maximum degradation of a synthetic caspase 3 substrate occurred at 18 h. The internucleosomal fragmentation and PARP degradation resulting from activation of this apoptotic pathway was prevented by the caspase 3 inhibitor Z-DEVD-fmk. No involvement of caspase 1, caspase 8, Bcl-2, or Bid was observed. Thus, the F. tularensis infection induces macrophage apoptosis through a pathway partly resembling the intrinsic apoptotic pathway.


2003 ◽  
Vol 77 (1) ◽  
pp. 45-56 ◽  
Author(s):  
George A. Belov ◽  
Lyudmila I. Romanova ◽  
Elena A. Tolskaya ◽  
Marina S. Kolesnikova ◽  
Yuri A. Lazebnik ◽  
...  

ABSTRACT Cells respond to poliovirus infection by switching on the apoptotic program, implementation of which is usually suppressed by viral antiapoptotic functions. We show here that poliovirus infection of HeLa cells or derivatives of MCF-7 cells was accompanied by the efflux of cytochrome c from mitochondria. This efflux occurred during both abortive infection (e.g., interrupted by guanidine-HCl and ending with apoptosis) and productive infection (leading to cytopathic effect). The former type of infection, but not the latter, was accompanied by truncation of the proapoptotic protein Bid. The virus-triggered cytochrome c efflux was suppressed by overexpression of Bcl-2. Both abortive and productive infections also resulted in a decreased level of procaspase-9, as revealed by Western blotting. In the former case, this decrease was accompanied by the accumulation of a protein with the electrophoretic mobility of active caspase-9. In contrast, in the productively infected cells, the latter protein was absent but caspase-9-related polypeptides with altered mobility could be detected. Both caspase-9 and caspase-3 were shown to be essential for the development of such hallmarks of virus-induced apoptosis as chromatin condensation, DNA degradation, and nuclear fragmentation. These and some other results suggest the following scenario. Poliovirus infection activates the apoptotic pathway, involving mitochondrial damage, cytochrome c efflux, and consecutive activation of caspase-9 and caspase-3. The apoptotic signal appears to be amplified by a loop which includes secondary processing of Bid. The implementation of the apoptotic program in productively infected cells may be suppressed, however, by the viral antiapoptotic functions, which act at a step(s) downstream of the cytochrome c efflux. The suppression appears to be caused, at least in part, by aberrant processing and degradation of procaspase-9.


Sign in / Sign up

Export Citation Format

Share Document