Effects of Flavonoids and Its Derivatives on Immune Cell Responses

Author(s):  
Gricelis Martínez ◽  
Michael R. Mijares ◽  
Juan B. De Sanctis

Background: Various pieces of evidence have shown that people who consume foods rich in polyphenolic and flavonoids compounds have a lower incidence of inflammatory, autoimmune diseases and cancer. Objective: The study aimed to review the most potent compounds that affect the immune response and diseases associated with it. Methods: Publications in PubMed and EmBase, from 1974-2018, and patents form Free patents online, Scifinder, Espacenet and Mendeley in which flavonoids, their semi-synthetic and synthetic derivatives are involved in immunosuppressive or immunostimulatory responses in vitro and in vivo. Results: In vitro, flavonoids and their derivatives inhibit various transcriptional factors, which modulate differentiation, proliferation, activation of immune cells and enhance regulatory T cell generation. Some flavonoids exert anti-inflammatory effects through: Blockade of NF-κB, and NLRP3 inflammasome, inhibition of pro-inflammatory cytokine production, IL-1β, IL-2, IL-6, TNF-α, IL-17A, down regulation of chemokines, and reduction of reactive oxygen and nitrogen species. Nevertheless, several reports have shown that some flavonoids enhance immune response by enhancing: oxygen and nitrogen radicals, antibody production, cytotoxic activity against tumours by increasing activating receptors and down regulating inhibitory receptors. In consequence, flavonoids may be potentially useful for treatment of infectious diseases and cancer. Conclusion: The most potent flavonoids in inflammation that modify immune responses are apigenin, quercetin and Epigallocatechin-3-Gallate (EGCG) although, other compounds are still under study and cannot be excluded. The most relevant patents concerning the use of flavones and other polyphenols were revised. A promising future of these compounds in different therapies is discussed.

2020 ◽  
Vol 34 ◽  
pp. 205873842097489
Author(s):  
Jiang Wang ◽  
Bo Wang ◽  
Xin Lv ◽  
Yingjie Wang

Periodontitis is an inflammatory disease caused by host immune response, resulting in a loss of periodontium and alveolar bone. Immune cells, such as T cells and macrophages, play a critical role in the periodontitis onset. Halofuginone, a natural quinazolinone alkaloid, has been shown to possess anti-fibrosis, anti-cancer, and immunomodulatory properties. However, the effect of halofuginone on periodontitis has never been reported. In this study, a ligature-induced mice model of periodontitis was applied to investigate the potential beneficial effect of halofuginone on periodontitis. We demonstrated that the administration of halofuginone significantly reduced the expression levels of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α) in vivo, and markedly suppressed immune cell infiltration into the infected sites. Furthermore, we also observed that halofuginone treatment blocked the T-helper 17 (Th17) cell differentiation in vivo and in vitro. We demonstrated for the first time that halofuginone alleviated the onset of periodontitis through reducing immune responses.


2011 ◽  
Vol 19 (1) ◽  
pp. 84-95 ◽  
Author(s):  
Jin Huk Choi ◽  
Joe Dekker ◽  
Stephen C. Schafer ◽  
Jobby John ◽  
Craig E. Whitfill ◽  
...  

ABSTRACTThe immune response to recombinant adenoviruses is the most significant impediment to their clinical use for immunization. We test the hypothesis that specific virus-antibody combinations dictate the type of immune response generated against the adenovirus and its transgene cassette under certain physiological conditions while minimizing vector-induced toxicity.In vitroandin vivoassays were used to characterize the transduction efficiency, the T and B cell responses to the encoded transgene, and the toxicity of 1 × 1011adenovirus particles mixed with different concentrations of neutralizing antibodies. Complexes formed at concentrations of 500 to 0.05 times the 50% neutralizing dose (ND50) elicited strong virus- and transgene-specific T cell responses. The 0.05-ND50formulation elicited measurable anti-transgene antibodies that were similar to those of virus alone (P= 0.07). This preparation also elicited very strong transgene-specific memory T cell responses (28.6 ± 5.2% proliferation versus 7.7 ± 1.4% for virus alone). Preexisting immunity significantly reduced all responses elicited by these formulations. Although lower concentrations (0.005 and 0.0005 ND50) of antibody did not improve cellular and humoral responses in naïve animals, they did promote strong cellular (0.005 ND50) and humoral (0.0005 ND50) responses in mice with preexisting immunity. Some virus-antibody complexes may improve the potency of adenovirus-based vaccines in naïve individuals, while others can sway the immune response in those with preexisting immunity. Additional studies with these and other virus-antibody ratios may be useful to predict and model the type of immune responses generated against a transgene in those with different levels of exposure to adenovirus.


2022 ◽  
Vol 23 (1) ◽  
pp. 553
Author(s):  
Ga-Yul Min ◽  
Ji-Hye Kim ◽  
Tae-In Kim ◽  
Won-Kyung Cho ◽  
Ju-Hye Yang ◽  
...  

Atopic dermatitis (AD) is a chronic inflammatory skin disease associated with a type 2 T helper cell (Th2) immune response. The IndigoPulverata Levis extract (CHD) is used in traditional Southeast Asian medicine; however, its beneficial effects on AD remain uninvestigated. Therefore, we investigated the therapeutic effects of CHD in 2,4-dinitrochlorobenzene (DNCB)-induced BALB/c mice and tumor necrosis factor (TNF)-α- and interferon gamma (IFN)-γ-stimulated HaCaT cells. We evaluated immune cell infiltration, skin thickness, and the serum IgE and TNF-α levels in DNCB-induced AD mice. Moreover, we measured the expression levels of pro-inflammatory cytokines, mitogen-activated protein kinase (MAPK), and the nuclear factor-kappa B (NF-κB) in the mice dorsal skin. We also studied the effect of CHD on the translocation of NF-κB p65 and inflammatory chemokines in HaCaT cells. Our in vivo results revealed that CHD reduced the dermis and epidermis thicknesses and inhibited immune cell infiltration. Furthermore, it suppressed the proinflammatory cytokine expression and MAPK and NF-κB phosphorylations in the skin tissue and decreased serum IgE and TNF-α levels. In vitro results indicated that CHD downregulated inflammatory chemokines and blocked NF-κB p65 translocation. Thus, we deduced that CHD is a potential drug candidate for AD treatment.


2021 ◽  
Vol 102 (10) ◽  
Author(s):  
Wisam-Hamzah Al Shujairi ◽  
Luke P. Kris ◽  
Kylie van der Hoek ◽  
Evangeline Cowell ◽  
Gustavo Bracho-Granado ◽  
...  

Viperin has antiviral function against many viruses, including dengue virus (DENV), when studied in cells in culture. Here, the antiviral actions of viperin were defined both in vitro and in a mouse in vivo model of DENV infection. Murine embryonic fibroblasts (MEFs) derived from mice lacking viperin (vip−/−) showed enhanced DENV infection, accompanied by increased IFN-β and induction of ISGs; IFIT1 and CXCL-10 but not IRF7, when compared to wild-type (WT) MEFs. In contrast, subcutaneous challenge of immunocompetent WT and vip−/− mice with DENV did not result in enhanced infection. Intracranial infection with DENV resulted in body weight loss and neurological disease with a moderate increase in mortality in vip−/− compared with WT mice, although this was not accompanied by altered brain morphology, immune cell infiltration or DENV RNA level in the brain. Similarly, DENV induction of IFN-β, IFIT1, CXCL-10, IRF7 and TNF-α was not significantly different in WT and vip−/− mouse brain, although there was a modest but significant increase in DENV induction of IL-6 and IfI27la in the absence of viperin. NanoString nCounter analysis confirmed no significant difference in induction of a panel of inflammatory genes in WT compared to vip−/− DENV-infected mouse brains. Further, polyI:C stimulation of bone marrow-derived macrophages (BMDMs) induced TNF-α, IFN-β, IL-6 and Nos-2, but responses were not different in BMDMs generated from WT or vip−/− mice. Thus, while there is significant evidence of anti-DENV actions of viperin in some cell types in vitro, for DENV infection in vivo a lack of viperin does not affect systemic or brain susceptibility to DENV or induction of innate and inflammatory responses.


2015 ◽  
Vol 83 (8) ◽  
pp. 3074-3082 ◽  
Author(s):  
Nan Hou ◽  
Xianyu Piao ◽  
Shuai Liu ◽  
Chuang Wu ◽  
Qijun Chen

T cell immunoglobulin- and mucin-domain-containing molecule 3 (Tim-3) has been regarded as an important regulatory factor in both adaptive and innate immunity. Recently, Tim-3 was reported to be involved in Th2-biased immune responses in mice infected withSchistosoma japonicum, but the exact mechanism behind the involvement of Tim-3 remains unknown. The present study aims to understand the role of Tim-3 in the immune response againstS. japonicuminfection. Tim-3 expression was determined by flow cytometry, and increased Tim-3 expression was observed on CD4+and CD8+T cells, NK1.1+cells, and CD11b+cells from the livers ofS. japonicum-infected mice. However, the increased level of Tim-3 was lower in the spleen than in the liver, and no increase in Tim-3 expression was observed on splenic CD8+T cells or CD11b+cells. The schistosome-induced upregulation of Tim-3 on natural killer (NK) cells was accompanied by reduced NK cell numbersin vitroandin vivo. Tim-3 antibody blockade led to upregulation of inducible nitric oxide synthase and interleukin-12 (IL-12) mRNA in CD11b+cells cocultured with soluble egg antigen and downregulation of Arg1 and IL-10, which are markers of M2 macrophages. In summary, we observed schistosome-induced expression of Tim-3 on critical immune cell populations, which may be involved in the Th2-biased immune response and alternative activation of macrophages during infection.


2021 ◽  
Vol 12 ◽  
Author(s):  
Noemi Rebecca Meier ◽  
Manuel Battegay ◽  
Tom H. M. Ottenhoff ◽  
Hansjakob Furrer ◽  
Johannes Nemeth ◽  
...  

Background: In individuals living with HIV infection the development of tuberculosis (TB) is associated with rapid progression from asymptomatic TB infection to active TB disease. Sputum-based diagnostic tests for TB have low sensitivity in minimal and subclinical TB precluding early diagnosis. The immune response to novel Mycobacterium tuberculosis in-vivo expressed and latency associated antigens may help to measure the early stages of infection and disease progression and thereby improve early diagnosis of active TB disease.Methods: Serial prospectively sampled cryopreserved lymphocytes from patients of the Swiss HIV Cohort Study developing TB disease (“cases”) and matched patients with no TB disease (“controls”) were stimulated with 10 novel Mycobacterium tuberculosis antigens. Cytokine concentrations were measured in cases and controls at four time points prior to diagnosis of TB: T1-T4 with T4 being the closest time point to diagnosis.Results: 50 samples from nine cases and nine controls were included. Median CD4 cell count at T4 was 289/ul for the TB-group and 456/ul for the control group. Viral loads were suppressed in both groups. At T4 Rv2431c-induced and Rv3614/15c-induced interferon gamma-induced protein (IP)-10 responses and Rv2031c-induced and Rv2346/Rv2347c-induced tumor necrosis factor (TNF)-α responses were significantly higher in cases compared to controls (p < 0.004). At T3 - being up to 2 years prior to TB diagnosis - Rv2031c-induced TNF-α was significantly higher in cases compared to controls (p < 0.004). Area under the receiver operating characteristics (AUROC) curves resulted in an AUC > 0.92 for all four antigen-cytokine pairs.Conclusion: The in vitro Mycobacterium tuberculosis-specific immune response in HIV-infected individuals that progress toward developing TB disease is different from those in HIV-infected individuals that do not progress to developing TB. These differences precede the clinical diagnosis of active TB up to 2 years, paving the way for the development of immune based diagnostics to predict TB disease at an early stage.


2021 ◽  
Vol 12 ◽  
Author(s):  
Cléa Melenotte ◽  
Pierre Pontarotti ◽  
Lucile Pinault ◽  
Jean-Louis Mège ◽  
Christian Devaux ◽  
...  

It has been reported that treatment with β-lactam antibiotics induces leukopenia and candidemia, worsens the clinical response to anticancer immunotherapy and decreases immune response to vaccination. β-lactamases can cleave β-lactam antibiotics by blocking their activity. Two distincts superfamilies of β-lactamases are described, the serine β-lactamases and the zinc ion dependent metallo-β-lactamases. In human, 18 metallo-β-lactamases encoding genes (hMBLs) have been identified. While the physiological role of most of them remains unknown, it is well established that the SNM1A, B and C proteins are involved in DNA repair. The SNM1C/Artemis protein is precisely associated in the V(D)J segments rearrangement, that leads to immunoglobulin (Ig) and T-cell receptor variable regions, which have a crucial role in the immune response. Thus in humans, SNM1C/Artemis mutation is associated with severe combined immunodeficiency characterized by hypogammaglobulinemia deficient cellular immunity and opportunistic infections. While catalytic site of hMBLs and especially that of the SNM1 family is highly conserved, in vitro studies showed that some β-lactam antibiotics, and precisely third generation of cephalosporin and ampicillin, inhibit the metallo-β-lactamase proteins SNM1A & B and the SNM1C/Artemis protein complex. By analogy, the question arises as to whether β-lactam antibiotics can block the SNM1C/Artemis protein in humans inducing transient immunodeficiency. We reviewed here the literature data supporting this hypothesis based on in silico, in vitro and in vivo evidences. Understanding the impact of β-lactam antibiotics on the immune cell will offer new therapeutic clues and new clinical approaches in oncology, immunology, and infectious diseases.


2019 ◽  
Vol 116 (25) ◽  
pp. 12416-12421 ◽  
Author(s):  
Shuai Jiang ◽  
Wei Yan ◽  
Shizhen Emily Wang ◽  
David Baltimore

Tet methylcytosine dioxygenase 2 (Tet2) is an epigenetic regulator that removes methyl groups from deoxycytosine residues in DNA. Tet2-deficient murine macrophages show increased lipopolysaccharide (LPS)-induced and spontaneous inflammation at least partially because Tet2 acts to restrain interleukin (IL)-1β and IL-6 expression in induced cells. MicroRNAs have emerged as critical regulatory noncoding RNAs that tune immune cell responses to physiological perturbations and play roles in pathological conditions in macrophages. To determine if a microRNA played any role in Tet2 activity, we examined the interrelationship of Tet2 action and the let-7 microRNA family, utilizing several let-7 microRNA engineered murine models. We first showed that Tet2, but not Tet3, is a direct target of the let-7a-1/let-7d/let-7f-1 (let-7adf) microRNAs in macrophages. We found that overexpression or deletion of the let-7adf gene cluster causes altered IL-6 induction both in tissue culture cells induced by LPS treatment in vitro as well as in a Salmonella infection mouse model in vivo. Mechanistically, let-7adf promotes IL-6 by directly repressing Tet2 levels and indirectly by enhancing a Tet2 suppressor, the key TCA cycle metabolite, succinate. We found that Let-7adf promotes succinate accumulation by regulating the Lin28a/Sdha axis. We thereby identify two pathways of let-7 control of Tet2 and, in turn, of the key inflammatory cytokine, IL-6, thus characterizing a regulatory pathway in which a microRNA acts as a feedback inhibitor of inflammatory processes.


2022 ◽  
Vol 12 ◽  
Author(s):  
Kathryn W. Juchem ◽  
Anshu P. Gounder ◽  
Jian Ping Gao ◽  
Elise Seccareccia ◽  
Narayana Yeddula ◽  
...  

NFAT activating protein with ITAM motif 1 (NFAM1) is an ITAM bearing-transmembrane receptor that has been reported to play a role in B cell signaling and development. We performed expression analysis of NFAM1 using publicly available gene expression data sets and found that NFAM1 expression is significantly induced in intestinal biopsies from Crohn’s disease (CD) and ulcerative colitis (UC) patients. At the cellular level, we further observed high expression of NFAM1 in monocytes and neutrophils, and low expression in B and T cells. To explore the role of NFAM1 in multiple immune cells and its potential role in IBD, we generated NFAM1-/- mice. In contrast with previous reports using NFAM1-transgenic mice, NFAM1-/- mice have no obvious defects in immune cell development, or B cell responses. Interestingly, NFAM1-/- monocytes produce reduced levels of TNF-α in response to activation by multiple IBD-relevant stimuli, including CD40L, TLR ligands and MDP. Additional cytokines and chemokines such as IL-6, IL-12, CCL3 and CCL4 are also reduced in CD40L stimulated NFAM1-/- monocytes. Collectively, these findings indicate that NFAM1 promotes monocyte activation, thereby amplifying the response to diverse stimuli. Similarly, we observed that deletion of NFAM1 in human monocytes reduces expression of CD40L-induced CCL4. Lastly, to assess the role of NFAM1 in IBD, we compared development of anti-CD40 induced colitis in NFAM1+/+ and NFAM1-/- mice. We found that although NFAM1 deletion had no impact on development of gut pathology, we did observe a decrease in serum TNF-α, confirming that NFAM1 promotes pro-inflammatory cytokine production in vivo. Taken together, we conclude that NFAM1 functions to amplify cytokine production and should be further evaluated as a therapeutic target for treatment of autoimmune disease.


Molecules ◽  
2020 ◽  
Vol 25 (17) ◽  
pp. 3918
Author(s):  
María Auxiliadora Dea-Ayuela ◽  
Sergi Segarra ◽  
Dolores R. Serrano ◽  
Francisco Bolás-Fernández

A stronger Th1 (cellular) immune response in canine leishmaniosis (CanL) leads to a better prognosis. Dietary nucleotides plus AHCC® have shown beneficial effects in dogs with clinical leishmaniosis and in clinically healthy Leishmania-infected dogs. The potential leishmanicidal activity of nucleotides and AHCC was assessed by quantifying nitric oxide (NO) production and replication of parasites. Their effects on lymphocyte proliferation were studied with and without soluble Leishmania infantum antigen (SLA) stimulation. Cytokine level variations were assessed using naïve and L. infantum-infected macrophages/lymphocytes cocultures. Promastigotes and amastigotes proliferation and NO macrophage production were not directly affected. Lymphocyte proliferation was significantly enhanced by nucleotides, AHCC, and their combinations only after SLA stimulation. Nucleotides and AHCC significantly increased the production of IL-1β, IL-2, IL-5, IL-9, IL-10, and IL-12 by naïve immune cells. In naïve and L. infantum-infected macrophage/lymphocyte cocultures, nucleotides with or without AHCC led to significant increases in IFN-γ and TNF-α. Given that these cytokines are involved in the effective Th1 immune response against Leishmania parasites, these mechanisms of action could explain the previously reported in vivo clinical efficacy of such combination and further support the use of nucleotides with or without AHCC in the management of CanL patients.


Sign in / Sign up

Export Citation Format

Share Document