scholarly journals Experiment Research on the Mechanical Property of Micron Particles Filled Silicone Rubber Material

2015 ◽  
Vol 9 (1) ◽  
pp. 95-101
Author(s):  
Chen Xiong ◽  
Wang Hongli ◽  
Xu Jinsheng ◽  
Zhao Lei

Six kinds of different content of micron solid particles of silicone rubber materials were prepared by mixing micron Al2O3, SiO2, cross-linking agent, and catalyst, etc. into the matrix material of micron-sized hydroxyl-terminated polydimethylsiloxane. The effect of micron solid particles on the mechanical property of silicone rubber was examined by the uniaxial tensile tests. Non-contact strain test system was adopted to measure the strain response of the samples in the experiments. The results show that, the mechanical property of silicone rubber material is rate-dependent, presenting a hyper-elastic property, which is similar to rubber-like material. The strength of the granular filled material increased with the content of the solid particles, moreover, the enhancement effect caused by SiO2 was stronger than that caused by Al2O3.

Metals ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 884 ◽  
Author(s):  
Seyed Vahid Sajadifar ◽  
Emad Scharifi ◽  
Ursula Weidig ◽  
Kurt Steinhoff ◽  
Thomas Niendorf

This study focuses on the high temperature characteristics of thermo-mechanically processed AA7075 alloy. An integrated die forming process that combines solution heat treatment and hot forming at different temperatures was employed to process the AA7075 alloy. Low die temperature resulted in the fabrication of parts with higher strength, similar to that of T6 condition, while forming this alloy in the hot die led to the fabrication of more ductile parts. Isothermal uniaxial tensile tests in the temperature range of 200–400 °C and at strain rates ranging from 0.001–0.1 s−1 were performed on the as-received material, and on both the solution heat-treated and the thermo-mechanically processed parts to explore the impacts of deformation parameters on the mechanical behavior at elevated temperatures. Flow stress levels of AA7075 alloy in all processing states were shown to be strongly temperature- and strain-rate dependent. Results imply that thermo-mechanical parameters are very influential on the mechanical properties of the AA7075 alloy formed at elevated temperatures. Microstructural studies were conducted by utilizing optical microscopy and a scanning electron microscope to reveal the dominant softening mechanism and the level of grain growth at elevated temperatures.


2012 ◽  
Vol 591-593 ◽  
pp. 949-954
Author(s):  
Jun Jie Xiao ◽  
Dong Sheng Li ◽  
Xiao Qiang Li ◽  
Chao Hai Jin ◽  
Chao Zhang

Uniaxial tensile tests were performed on a Ti-6Al-4V alloy sheet over the temperature range of 923K-1023K with the strain rates of 5×10-4s-1-5×10-2s-1 up to a 25% length elongation of the specimen. The true stress-strain curves reveal that the flow stress decreases with the increase of the temperature and the decrease of the strain rate. In the same process, the accompanying softening role increases. It is found that the Ti-6Al-4V shows the features of non-linearity, temperature sensitivity and strain rate dependence in hot environment. Finally, an Arrhenius-type law has been established to predict the experimental data and the prediction precision was verified by the plotting of parameter and flow stress, which revealed that the error of stress exponent was only 4.99%. This indicates the flow stress model has high precision and can be used for the process design and the finite element simulation of hot forming thin-wall Ti-6Al-4V alloy components.


2017 ◽  
Vol 863 ◽  
pp. 112-116 ◽  
Author(s):  
Ling Mei Guo ◽  
Yan An Lv ◽  
Zhi Fang Deng ◽  
Yang Wang

Uniaxial tension tests for filled silicone rubber were performed at high strain rates using a split Hopkinson tension bar system. Quasi-static tension tests were carried out using an Instron-E3000 material test system. The grip fixture was designed to reliably connect the tensile specimen with the incident/transmitted bars. The method to increase the signal-noise ratio of the stress pulse in the transmitted bar was proposed. The effect of specimen gage length-to-width ratio on the stress-strain responses was experimentally studied. The suitable specimen geometry was determined by means of experimental investigation and finite element analysis. The automated grid method was used to capture the deformation information of the tensile specimen. Experiments indicate that the tension responses of silicone rubber exhibit the apparent hyper-elastic and rate-dependent characteristics. The values of tensile modulus increase with the increase of strain rate. The stress at a given elongation increases with the increase of strain rate.


2016 ◽  
Vol 84 (2) ◽  
Author(s):  
Tongqing Lu ◽  
Jikun Wang ◽  
Ruisen Yang ◽  
T. J. Wang

Soft materials including elastomers and gels are widely used in applications of energy absorption, soft robotics, bioengineering, and medical instruments. For many soft materials subject to loading and unloading cycles, the stress required on reloading is often less than that on the initial loading, known as Mullins effect. Meanwhile, soft materials usually exhibit rate-dependent viscous behavior. Both effects were recently reported on a new kind of synthesized tough gel, with capability of large deformation, high strength, and extremely high toughness. In this work, we develop a coupled viscoelastic and Mullins-effect model to characterize the deformation behavior of the tough gel. We modify one of the elastic components in Zener model to be a damageable spring to incorporate the Mullins effect and model the viscous effect to behave as a Newtonian fluid. We synthesized the tough gel described in the literature (Sun et al., Nature 2012) and conducted uniaxial tensile tests and stress relaxation tests. We also investigated the two effects on three other soft materials, polyacrylate elastomer, Nitrile-Butadiene Rubber, and polyurethane. We find that our presented model is so robust that it can characterize all the four materials, with modulus ranging from a few tens of kilopascal to megapascal. The theory and experiment for all tested materials agree very well.


2017 ◽  
Vol 872 ◽  
pp. 198-203 ◽  
Author(s):  
Xian Bin Du ◽  
You Qun Zhao ◽  
Fen Lin ◽  
Zhen Xiao

In order to improve the driving safety of vehicles, a non-pneumatic safety tire named mechanical elastic wheel was developed, and the structural components of mechanical elastic wheel and the method of determining the rubber material parameters of Mooney-Rivlin model were introduced. Uniaxial tensile tests of the rubber in different parts of mechanical elastic wheel were carried out with a stretch test machine and the material parameters and of the Mooney-Rivlin model were determined by fitting the experimental data. Finite element method (FEM) was used to validate the stability of the fitted data. The results show that the obtained material parameters have high accuracy and can be a reference for the subsequent finite element simulation of mechanical elastic wheel.


2013 ◽  
Vol 690-693 ◽  
pp. 2686-2689
Author(s):  
Ying Mei Li ◽  
Tian Yu Zhao ◽  
Jun Liu ◽  
Bao Zong Huang

Aiming at Pbfree solder Sn4.0Ag0.5Cu (in short, SAC405), the uniaxial tensile tests are accomplished with constant strain-rate under different temperature and strain-rate load conditions. The elastic-viscoplastic behaviors of SAC405 solders are studied. The rate-dependent material main properties are analyzed, such ad yield limit, tensile strength, saturation stress, etc. Partitioned constitutive model is accepted to describe the constitutive behavior of SAC405 solder. The seven parameters in partitioned model are determined by experiment data. The results of numerical simulation are fitted with the experimental values.


2020 ◽  
Vol 93 (1) ◽  
pp. 183-194 ◽  
Author(s):  
Lingmei Guo ◽  
Yang Wang

ABSTRACT The effects of strain rate and temperature on the tensile behavior of silicone rubber were investigated. The quasi-static uniaxial tensile experiments were conducted using an electromechanical testing system, and the high-rate uniaxial tensile tests were performed employing a modified split Hopkinson tension bar technique for low-strength and low-impedance materials. The tensile responses were obtained at strain rates of 0.001–1400 s−1 and temperatures ranging from −50 to 50 °C. The experiments reveal that the tensile stress–strain behavior of silicone rubber is nonlinear and highly dependent on strain rate and temperature. The values of stiffness and nominal stress at a given elongation increase with increased strain rate and decrease with increasing temperature. It is appropriate to postulate that the tensile response at high strain rates arises from the combination of hyperelasticity and viscoelasticity. According to the incompressibility assumption, a phenomenologically inspired visco-hyperelastic model was proposed to describe the constitutive behavior of silicone rubber over wide ranges of strain rates and temperatures.


2010 ◽  
Vol 667-669 ◽  
pp. 175-179 ◽  
Author(s):  
Ping Jiang ◽  
Jian Lu ◽  
Xiao Lei Wu

A gradient nanostructured layer (GNsL) was generated on the two sides of bulk sample in 304L stainless steel by means of the surface mechanical attrition treatment. The microstructure of the GNsL was characterized via TEM observation. The prominent microstructural features involve the intersection of multi-system twin operation, subdividing the original grains into blocks, a martensite transformation mainly occurring at the interface of the twins as well, and the randomly orientated nanocrystallites at the top of surface. After annealing at 750°C for 10 min, recovery had occurred and the dislocation density was much reduced. The vast majority of the grains at the top surface were in the nanocrystalline/ultrafine range, with some recrystallization regions. The uniaxial tensile tests were performed to obtain the mechanical property of bulk samples with GNsL. The yield strength was about 2 times higher than that of the coarse-grained counterpart, but with a decrease in uniform elongation and elongation to failure as well. The relationship between the microstructure and mechanical property was discussed in detail.


Author(s):  
Deepak D. ◽  
Nitesh Kumar ◽  
Shreyas P. Shetty ◽  
Saurabh Jain ◽  
Manoj Bhat

The expensive nature of currently used materials in the soft robotic industry demands the consideration of alternative materials for fabrication. This work investigates the performance of RTV-2 grade silicone rubber for fabrication of a soft actuator. Initially, a cylindrical actuator is fabricated using this material and its performance is experimentally assessed for different pressures. Further, parametric variations of the effect of wall thickness and inflation pressure are studied by numerical methods. Results show that, both wall thickness and inflation pressure are influential parameters which affect the elongation behaviour of the actuator. Thin (1.5 mm) sectioned actuators produced 76.97% more elongation compared to thick sectioned, but the stress induced is 89.61 % higher. Whereas, the thick sectioned actuator (6 mm) showed a higher load transmitting capability. With change in wall thickness from 1.5 mm to 6 mm, the elongation is reduced by 76.97 %, 38.35 %, 21.05 % and 11.43 % at pressure 100 kPa, 75 kPa, 50 kPa and 25 kPa respectively. The induced stress is also found reduced by 89.61 %, 86.66 %, 84.46 % and 68.68 % at these pressures. The average load carrying capacity of the actuator is found to be directly proportional to its wall thickness and inflation pressure.


Sign in / Sign up

Export Citation Format

Share Document