scholarly journals New Insights into the Interaction of Free-Living Amoebae and Pandoravirus Inopinatum: Investigations of the Host Range and the Role of Multilamellar Bodies

2018 ◽  
Vol 6 (1) ◽  
pp. 63-74
Author(s):  
Patrick L. Scheid

Objective:FLA are predatory heterotrophic microorganisms, feeding as trophozoites on bacteria, cyanobacteria, fungi and algae while adhering to surfaces through phagocytosis. It is known that FLA produce and expel vesicles as part of the digestive process. Bacteria are packaged in multilamellar bodies and are released into the environment if not digested. In 2008, it was shown how easily the so-called Pandoraviruses can get in close contact with humans, while proliferating inAcanthamoeba.Materials and Methods:In our study, the search for these packages and multilamellar bodies inAcanthamoebaewas conducted by electron microscopy with special emphasis onPandoravirus inopinatumvirions being involved in these processes. The multilamellar bodies were detected within the trophozoites of the amoeba host strain and as expelled vesicles within their environment. Neither digested, partially digested or viablePandoravirus inopinatumvirions nor developmental stages were found within these packages. A modified host range evaluation method was used to study the uptake and the proliferation ofPandoravirus inopinatumvirions byAcanthamoebatrophozoitesvialight microscopy and to determine the host range.Results:In addition to theAcanthamoebastrain, which was found to harborPandoravirus inopinatuminitially, we confirmed another 9Acanthamoebastrains to be susceptible, among them members of genotypes T4 and T 11.Conclusion:The modified time series method, which we used, proved to be superior to the initial (more static) host range studies, in both axenic and xenic cultures.

2020 ◽  
Vol 11 (SPL1) ◽  
pp. 977-982
Author(s):  
Mohamed J. Saadh ◽  
Bashar Haj Rashid M ◽  
Roa’a Matar ◽  
Sajeda Riyad Aldibs ◽  
Hala Sbaih ◽  
...  

SARS-COV2 virus causes Coronavirus disease (COVID-19) and represents the causative agent of a potentially fatal disease that is of great global public health concern. The novel coronavirus (2019) was discovered in 2019 in Wuhan, the market of the wet animal, China with viral pneumonia cases and is life-threatening. Today, WHO announces COVID-19 outbreak as a pandemic. COVID-19 is likely to be zoonotic. It is transmitted from bats as intermediary animals to human. Also, the virus is transmitted from human to human who is in close contact with others. The computerized tomographic chest scan is usually abnormal even in those with no symptoms or mild disease. Treatment is nearly supportive; the role of antiviral agents is yet to be established. The SARS-COV2 virus spreads faster than its two ancestors, the SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV), but has lower fatality. In this article, we aimed to summarize the transmission, symptoms, pathogenesis, diagnosis, treatment, and vaccine to control the spread of this fatal disease.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Fang Li ◽  
Zaichao Zheng ◽  
Hongyu Li ◽  
Rongrong Fu ◽  
Limei Xu ◽  
...  

AbstractDespite the central role of hemocytes in crustacean immunity, the process of hemocyte differentiation and maturation remains unclear. In some decapods, it has been proposed that the two main types of hemocytes, granular cells (GCs) and semigranular cells (SGCs), differentiate along separate lineages. However, our current findings challenge this model. By tracking newly produced hemocytes and transplanted cells, we demonstrate that almost all the circulating hemocytes of crayfish belong to the GC lineage. SGCs and GCs may represent hemocytes of different developmental stages rather than two types of fully differentiated cells. Hemocyte precursors produced by progenitor cells differentiate in the hematopoietic tissue (HPT) for 3 ~ 4 days. Immature hemocytes are released from HPT in the form of SGCs and take 1 ~ 3 months to mature in the circulation. GCs represent the terminal stage of development. They can survive for as long as 2 months. The changes in the expression pattern of marker genes during GC differentiation support our conclusions. Further analysis of hemocyte phagocytosis indicates the existence of functionally different subpopulations. These findings may reshape our understanding of crustacean hematopoiesis and may lead to reconsideration of the roles and relationship of circulating hemocytes.


1969 ◽  
Vol 1 (4) ◽  
pp. 369-388 ◽  
Author(s):  
R. L. Cliquet

SummaryIn 1966, a National Survey on Fecundity and Fertility was organized in Belgium. Approximately 3000 married women under 41 years of age and living with their husbands were interviewed and asked about their reproductive histories. The present paper records the sociobiological aims and methods and some preliminary results of this survey. The aims were to:(1) study the influences of contraception on human needs and qualities, in this case mainly potential fecundity;(2) study the influence of attempts to increase the potential fecundity level in modern society on fecundity gene frequencies;(3) study the influences of the overall socio-cultural environment on fecundity and fertility variables with particular reference to differences in social status in Western society;(4) analyse the role of social assortment of fecundity and fertility variables on the biological structure, and possibly the composition, of modern populations.A relatively large, but far from complete body of data has been collected on a number of individual fecundity and fertility variables, on the medical processes employed to increase fecundity, on contraception, and on a number of conventional sociological and demographic variables.The principles underlying the present approach to the study of fecundity are explained, and a few preliminary results for one of the general fecundity classifications are shown.The information collected on contraception has been qualitatively analysed and a correction and evaluation method is described. Data on the use of the different contraceptive methods show that substantial sections of the Belgian population are limiting their family size in a way which is inefficient, from both sexual and familial standpoints.


2021 ◽  
Vol 42 (1) ◽  
pp. 77-85
Author(s):  
Meghana Muthuvattur Pallath ◽  
Ashok Kumar Ahirwar ◽  
Satyendra Chandra Tripathi ◽  
Priyanka Asia ◽  
Apurva Sakarde ◽  
...  

Abstract COVID-19 has resulted in an ongoing global pandemic, which spread largely among people who have had close contact with the infected person. The immunopathology of the SARS-CoV-2 virus includes the production of an excess amount of pro-inflammatory cytokines “a cytokine-storm”. The respiratory system (main), cardiovascular system and the gastrointestinal tract are the most affected body systems during viral infection. It has been found that most of the patients who require admission to hospital are elderly or have chronic underlying diseases. Higher cases of malnutrition and co-morbidities like diabetes mellitus and cardiovascular diseases are reported in elderly patients due to which, the immune system weakens and hence, the response to the virus is diminished in magnitude. A deficiency of micronutrients results in impaired immune responses leading to improper secretion of cytokines, alterations in secretory antibody response and antibody affinity which increases susceptibility to viral infection. The deficiency of various micronutrients in COVID-19 patient can be treated by appropriate nutritional supplements, prescribed after evaluating the patients’ nutritional status. Here we aim to highlight the role of a few particular nutrients namely Vitamin D, Vitamin C, Omega-3 fatty acids, Zinc and Magnesium along with the synergistic roles they play in enhancing immunity and thus, maintaining homeostasis.


Author(s):  
Millissia Ben Maamar ◽  
Eric E Nilsson ◽  
Michael K Skinner

Abstract One of the most important developing cell types in any biological system is the gamete (sperm and egg). The transmission of phenotypes and optimally adapted physiology to subsequent generations is in large part controlled by gametogenesis. In contrast to genetics, the environment actively regulates epigenetics to impact the physiology and phenotype of cellular and biological systems. The integration of epigenetics and genetics is critical for all developmental biology systems at the cellular and organism level. The current review is focused on the role of epigenetics during gametogenesis for both the spermatogenesis system in the male and oogenesis system in the female. The developmental stages from the initial primordial germ cell through gametogenesis to the mature sperm and egg are presented. How environmental factors can influence the epigenetics of gametogenesis to impact the epigenetic transgenerational inheritance of phenotypic and physiological change in subsequent generations is reviewed.


Parasitology ◽  
2014 ◽  
Vol 141 (9) ◽  
pp. 1203-1215 ◽  
Author(s):  
VICTORIA GILLAN ◽  
EILEEN DEVANEY

SUMMARYNematodes are amongst the most successful and abundant organisms on the planet with approximately 30 000 species described, although the actual number of species is estimated to be one million or more. Despite sharing a relatively simple and invariant body plan, there is considerable diversity within the phylum. Nematodes have evolved to colonize most ecological niches, and can be free-living or can parasitize plants or animals to the detriment of the host organism. In this review we consider the role of heat shock protein 90 (Hsp90) in the nematode life cycle. We describe studies on Hsp90 in the free-living nematode Caenorhabditis elegans and comparative work on the parasitic species Brugia pahangi, and consider whether a dependence upon Hsp90 can be exploited for the control of parasitic species.


2002 ◽  
Vol 48 (4) ◽  
pp. 526-552 ◽  
Author(s):  
Barbara Bloom ◽  
Barbara Owen ◽  
Elizabeth Piper Deschenes ◽  
Jill Rosenbaum

This article reports findings from a survey of officials from various California state agencies and a series of interviews and focus groups with female youth and professionals serving this population. The study examined types of services provided, program barriers, and facilitation of change. The findings were used to make gender-specific policy and program recommendations. The authors found that meeting the needs of girls and young women requires specialized staffing and training, particularly in terms of relationship and communication skills, gender differences in delinquency, substance abuse education, the role of abuse, developmental stages of female adolescence, and available programs and appropriate placements and limitations. Effective programming for girls and women should be shaped by and tailored to their real-world situations and problems. In order to do this, a theoretical approach to treatment that is gender-sensitive and that addresses the realities of girls' lives must be developed.


2004 ◽  
Vol 379 (2) ◽  
pp. 283-289 ◽  
Author(s):  
Marie-Chloé BOULANGER ◽  
Tina Branscombe MIRANDA ◽  
Steven CLARKE ◽  
Marco di FRUSCIO ◽  
Beat SUTER ◽  
...  

The role of arginine methylation in Drosophila melanogaster is unknown. We identified a family of nine PRMTs (protein arginine methyltransferases) by sequence homology with mammalian arginine methyltransferases, which we have named DART1 to DART9 (Drosophilaarginine methyltransferases 1–9). In keeping with the mammalian PRMT nomenclature, DART1, DART4, DART5 and DART7 are the putative homologues of PRMT1, PRMT4, PRMT5 and PRMT7. Other DART family members have a closer resemblance to PRMT1, but do not have identifiable homologues. All nine genes are expressed in Drosophila at various developmental stages. DART1 and DART4 have arginine methyltransferase activity towards substrates, including histones and RNA-binding proteins. Amino acid analysis of the methylated arginine residues confirmed that both DART1 and DART4 catalyse the formation of asymmetrical dimethylated arginine residues and they are type I arginine methyltransferases. The presence of PRMTs in D. melanogaster suggest that flies are a suitable genetic system to study arginine methylation.


2005 ◽  
Vol 37 (5) ◽  
pp. 373-382 ◽  
Author(s):  
William B. SANDERS

The utility of plastic cover slips as a substratum for in situ study of lichen developmental stages is further explored in a neotropical foliicolous lichen community and in a European temperate corticolous community. Twenty-one months after placement in the tropical forest, the cover slips bore foliicolous lichen thalli with several species producing characteristic ascocarps and ascospores, indicating the suitability of the substratum for completion of the life cycle of these lichens. On cover slips placed within the temperate corticolous community, lichen propagules anchored to the substratum with relatively short attachment hyphae but did not develop further within the one year observation period. Intimately intermixed microbial communities of short-celled, mainly pigmented fungi and chlorophyte algae developed upon the transparent substratum. Among the algae, Trebouxia cells, often in groups showing cell division and without associated lichenizing hyphae, were commonly observed. The potential significance of the free-living populations in the life cycle of Trebouxia and in those of Trebouxia-associated lichen fungi is discussed.


Sign in / Sign up

Export Citation Format

Share Document