scholarly journals Nitric Oxide and its Role in Cardiovascular Diseases

2011 ◽  
Vol 3 (1) ◽  
pp. 65-71 ◽  
Author(s):  
Branislava Dobutovic
2010 ◽  
Vol 88 (3) ◽  
pp. 241-248 ◽  
Author(s):  
Garry X. Shen

Cardiovascular diseases are the predominant cause of death in patients with diabetes mellitus. Underlying mechanism for the susceptibility of diabetic patients to cardiovascular diseases remains unclear. Elevated oxidative stress was detected in diabetic patients and in animal models of diabetes. Hyperglycemia, oxidatively modified atherogenic lipoproteins, and advanced glycation end products are linked to oxidative stress in diabetes. Mitochondria are one of major sources of reactive oxygen species (ROS) in cells. Mitochondrial dysfunction increases electron leak and the generation of ROS from the mitochondrial respiratory chain (MRC). High levels of glucose and lipids impair the activities of MRC complex enzymes. NADPH oxidase (NOX) generates superoxide from NADPH in cells. Increased NOX activity was detected in diabetic patients. Hyperglycemia and hyperlipidemia increased the expression of NOX in vascular endothelial cells. Accumulated lines of evidence indicate that oxidative stress induced by excessive ROS production is linked to many processes associated with diabetic cardiovascular complications. Overproduction of ROS resulting from mitochondrial dysfunction or NOX activation is associated with uncoupling of endothelial nitric oxide synthase, which leads to reduced production of nitric oxide and endothelial-dependent vasodilation. Gene silence or inhibitor of NOX reduced oxidized or glycated LDL-induced expression of plasminogen activator inhibitor-1 in endothelial cells. Statins, hypoglycemic agents, and exercise may reduce oxidative stress in diabetic patients through the reduction of NOX activity or the improvement of mitochondrial function, which may prevent or postpone the development of cardiovascular complications.


Proceedings ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 15
Author(s):  
Parent ◽  
Zhou ◽  
Bonetti ◽  
Perrin-Sarrado ◽  
Lartaud ◽  
...  

Cardiovascular diseases are associated with oxidative stress and a reduced bioavailability of nitric oxide (NO). To counteract both processes, the administration of S-nitrosoglutathione (GSNO) can be envisaged. GSNO is able to induce protein S-nitrosation (Pr-SNO), which is a post-translational modification of proteins, participating in the storage of NO in tissues, and protect thiol functions from oxidation. However, GSNO antioxidant power is poorly studied, which is probably linked to its low stability. This low stability can be addressed by nanotechnologies that will increase GSNO protection and provide a sustained release of the drug.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Xiaoyu Liu ◽  
John Fassett ◽  
Yidong Wei ◽  
Yingjie Chen

Asymmetric dimethylarginine (ADMA) is an endogenous nitric oxide synthase inhibitor that blocks nitric oxide production, while congestive heart failure is associated with increased plasma and tissue ADMA content. Increased plasma ADMA is a strong and independent predictor of all-cause mortality in the community and the strongest predictor of mortality in patients after myocardial infarction. Recent studies demonstrated that dimethylarginine dimethylaminohydrolase-1 (DDAH1) is the critical enzyme for ADMA degradation and thereby plays an important role in maintaining cardiovascular nitric oxide bioavailability. Interestingly, activation of the farnesoid X receptor (FXR) through the bile acid ursodeoxycholic acid (UDCA) or synthetic FXR agonists, such as GW4064, can increase DDAH1 expression. Thus, modulating DDAH1 activity through FXR receptor agonists such as UDCA could be a therapeutic target for treating reduced nitric oxide bioavailability in congestive heart failure and other cardiovascular diseases.


2005 ◽  
Vol 108 (3) ◽  
pp. 205-213 ◽  
Author(s):  
Sieglinde KOFLER ◽  
Thomas NICKEL ◽  
Michael WEIS

Complex cellular and inflammatory interactions are involved in the progress of vascular diseases. Endothelial cells, upon exposure to cytokines, undergo profound alterations of function that involve gene expression and de novo protein synthesis. The functional reprogramming of endothelial cells by cytokines is of importance especially in patients with chronic vascular inflammation. The intercellular network of dendritic cells, T-lymphocytes, macrophages and smooth muscle cells generates a variety of stimulatory cytokines [e.g. TNF-α (tumour necrosis factor-α), IL (interleukin)-1, IL-6 and IFN-γ (interferon-γ)] and growth factors that promote the development of functional and structural vascular changes. High concentrations of proinflammatory cytokines increase oxidative stress, down-regulate eNOS (endothelial nitric oxide synthase) bioactivity and induce endothelial cell apoptosis. Chemoattractant cytokines [e.g. VEGF (vascular endothelial growth factor), TGF-β1 (transforming growth factor-β1) and IL-8] are important regulators of inflammation-induced angiogenesis and are directly modulated by nitric oxide. This review will focus on the vascular mechanisms orchestrated by cytokines and summarizes the current knowledge concerning the contribution of cytokines to cardiovascular diseases.


2016 ◽  
Vol 29 (1) ◽  
pp. 14-20 ◽  
Author(s):  
Magdalena Polakowska ◽  
Jolanta Orzelska-Gorka ◽  
Sylwia Talarek

AbstractNitric oxide (NO) is a relatively novel messenger that plays a significant role in a wide range of physiological processes. Currently, it is known that, both, lack and excess of NO can cause diseases, thus a lot of substances have been discovered and utilized which can change the concentration of this molecule within the organism. The aim of the present work is to provide an overview of currently used agents modulating the L-arginine:NO:cGMP pathway, as well as to summarize current understanding of their pharmacological profiles. Nowadays, most of these agents are employed particularly in the treatment of cardiovascular diseases. Further studies can hold promise for enhancing the therapeutic equipment for a variety of other impairments, such as osteoporosis, and also in treatments of the central nervous system.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Dan Wu ◽  
Qingxun Hu ◽  
Fenfen Ma ◽  
Yi Zhun Zhu

Endothelium-dependent vasorelaxant injury leads to a lot of cardiovascular diseases. Both hydrogen sulfide (H2S) and nitric oxide (NO) are gasotransmitters, which play a critical role in regulating vascular tone. However, the interaction between H2S and NO in vasorelaxation is still unclear. ZYZ-803 was a novel H2S and NO conjugated donor developed by H2S-releasing moiety (S-propyl-L-cysteine (SPRC)) and NO-releasing moiety (furoxan). ZYZ-803 could time- and dose-dependently relax the sustained contraction induced by PE in rat aortic rings, with potencies of 1.5- to 100-fold greater than that of furoxan and SPRC. Inhibition of the generations of H2S and NO with respective inhibitors abolished the vasorelaxant effect of ZYZ-803. ZYZ-803 increased cGMP level and the activity of vasodilator stimulated phosphoprotein (VASP) in aortic rings, and those effects could be suppressed by the inhibitory generation of H2S and NO. Both the inhibitor of protein kinase G (KT5823) and the inhibitor of KATPchannel (glibenclamide) suppressed the vasorelaxant effect of ZYZ-803. Our results demonstrated that H2S and NO generation from ZYZ-803 cooperatively regulated vascular tone through cGMP pathway, which indicated that ZYZ-803 had therapeutic potential in cardiovascular diseases.


2009 ◽  
Vol 6 (4) ◽  
pp. 20-25
Author(s):  
Anna Grigor'evna Evdokimova ◽  
Valeriy Aleksandrovich Ol'khin ◽  
Vladimir Vyacheslavovich Evdokimov ◽  
Ekaterina Viktorovna Zolotareva ◽  
Alla Blalovna Khadzegova

Unlike first-line antihypertensives, nebivolol, a cardioselective b-blocker with vasodilatatory properties caused by its ability to modulate the activity of nitric oxide, positively affects prognosis in patients with arterial hypertension and chronic heart failure and shows metabolic neutrality. The clinical and pathogenetic studies demonstrating the benefits of nebivolol are discussed. Keywords: nebivolol, arterial hypertension, b-blockers.


2021 ◽  
Vol 11 ◽  
Author(s):  
Simone Regina Potje ◽  
Tiago Dal-Cin Paula ◽  
Michele Paulo ◽  
Lusiane Maria Bendhack

This review highlights recent findings about the role that endothelial glycocalyx and caveolae play in vascular homeostasis. We describe the structure, synthesis, and function of glycocalyx and caveolae in vascular cells under physiological and pathophysiological conditions. Special focus will be given in glycocalyx and caveolae that are associated with impaired production of nitric oxide (NO) and generation of reactive oxygen species (ROS). Such alterations could contribute to the development of cardiovascular diseases, such as atherosclerosis, and hypertension.


Sign in / Sign up

Export Citation Format

Share Document