α-Glucosidase Inhibitory Activity of the Extracts and Major Phytochemical Components of Smilax glabra Roxb

2020 ◽  
Vol 10 (1) ◽  
pp. 26-32
Author(s):  
Phuong T.M. Nguyen ◽  
Quang V. Ngo ◽  
Minh T.H. Nguyen ◽  
Alan T. Maccarone ◽  
Stephen G. Pyne

Background: A therapeutic approach to treat diabetes is to decrease postprandial hyperglycemia. α-Glucosidase inhibitors from plant sources offer an attractive strategy for the control of hyperglycemia. Smilax glabra Roxb is a medicinal plant found in Asia, including Vietnam, which is used in the treatment of chronic diseases. However, the antidiabetic activity and the identification of α-glucosidase inhibitors from this plant have not been intensively investigated. This research was carried out to determine the α-glucosidase inhibitory activity of the extracts and that of the major phytochemical components of Smilax glabra Roxb. This could lead to further studies on the role of these compounds in hyperglycemia control, as well as identify their potential future applications. Methods: Column chromatography combined with crystallization procedures were used to isolate active fractions and two major compounds. The chemical structures of these compounds were determined by analysis of their NMR spectroscopic data, as well as MS data and comparisons made with the literature data. The α-glucosidase inhibitory activity was determined spectrophotometrically using p-nitrophenyl α-D-glucopyranoside as a substrate. The in vitro cytotoxicity of the isolated compounds and fractions was determined using the MTT assay. Results: The two major compounds, astilbin and 5-O-caffeoylshikimic acid together with two very active fractions, F7 and F8, were isolated from the rhizome. The two major compounds had α- glucosidase inhibitory activities with IC50 values of ca. 125 µg/mL and 38 µg/mL, respectively which are about 4 and 13 folds higher activity than the reference compound acarbose (IC50 of ca. 525 µg/mL). Fractions F7 and F8 showed very promising inhibitory activities towards α-glucosidase with IC50 values of 5.5 and 5.8 µg/mL, respectively. Cytotoxicity data on mouse fibroblast NIH3T3 cells indicated that the active compounds and fractions were not toxic at concentrations that are greater than their respective IC50 values. The α-glucosidase inhibitory activity of 5-Ocaffeoylshikimic acid and that of the two active fractions are reported here for the first time. Conclusion: The two major isolated compounds and fractions, F7 and F8, significantly contribute to the α-glucosidase inhibitory activity of S. glabra Roxb extract. Further work is needed to clarify their modes of action and potential application.

Author(s):  
Pavan Kumar Kurakula ◽  
Tharun D ◽  
Mahantesh S ◽  
Krishna O ◽  
Sudheer A ◽  
...  

Diabetes mellitus ‘the disease of modern civilization’ is characterized by chronic hyperglycaemia. The management of elevated post prandial glucose is critical to control the sequale of complications and α-amylase, α-glucosidases are responsible for elevated plasma glucose. Enzyme inhibitors in current clinical practice like acarbose, voglibose etc. are known to cause various gastrointestinal side effects. The present study was aimed to screen for potential α-amylase and α-glucosidase inhibitors from natural sources by in–vitro antidiabetic assays to overcome the side effects and toxicity. Different concentrations of leaf juice of Plectranthus amboinicus Lour. (20, 40, 60, 80 &100 μg/ml) were tested against fungal α-amylase and α-glucosidases isolated from albino rat small intestine and a prominent dose dependent inhibition of the enzymes was observed comparable with the marketed product, Acarbose. The IC50 values of LJPA and acarbose on fungal α-amylase was found to be 83.15 &52.15 μg/ml respectively. The IC50 values of LJPA and acarbose on α-glucosidase was found to be 92.44 &54.84 μg/ml respectively. The protein concentration of leaf juice was found to be 10.6 mg/ml.


Author(s):  
Manal Mortady Hamed ◽  
Mona Abdel Motagally Mohamed ◽  
Wafaa Sabry Ahmed

Objective: Phoenix dactylifera Linn (Fam.: arecaceae)or date fruits are commercial crops that notarized in holy quran. 70% aqueous MeOH extract of the fruits led to isolation of six compounds; its chemical structures were determined as, β-sitosterol (1), caffeic acid (2), ferulic acid (3), protocatechuic acid (4), p-hydroxybenzoic acid (5) and luteolin (6).Methods: The accurately weighed date fruits were washed, sliced and socked freshly in 70% methanol then exhaustively extracted under reflux for about 2 w and filtered, then fractionated by different solvent; finaly the butanol extract evaporated and fractionated on a polyamide glass column. Using Sephadex LH-20 column to purify the compounds obtained. In our preliminary study, the extracts and compounds were subjected to in vitro cytotoxicity against HepG2 cell line through the MTT assay and the antioxidant potential of the extracts and pure compounds were assayed through in vitro model using (DPPH) and phosphomolybdenum assays.Results: Compounds 2 and 3 exhibited promising antitumor activity with IC50 values of 6 and 10 μg/ml, respectively. Moreover compounds 1, 4, 5 and 6 showed cytotoxic activity with IC50 values of 13, 15, 21 and 35 μg/ml, respectively. The antioxidant potential of the compounds showed the inhibition percentage values (SC50) ranged from 4.36 to 10.25 μg/ml, while the total antioxidant capacity ranged from (583.66 to 702.00 mg AAE/g compound).Conclusion: Our study demonstrated that; dates constituents are powerful as antioxidant and antitumor; hence it is the best potential for pharmaceutical applications.


2020 ◽  
Vol 58 (5) ◽  
pp. 533
Author(s):  
Nguyen Phi-Hung

From the whole plant of Isodon ternifolius collected in Vietnam, four triterpens including ursaldehyde (1), ursolic acid (2), b-sitosterol (3) and b-sitosteryl ferulate (4) were purified. Their chemical structures were determined by interpretation of NMR and MS data and comparison with the literatures. Compounds 1-4 were evaluated for their inhibitory activity against PTP1B enzyme activity using in vitro assay. Compounds 1 and 2 displayed potential activities with IC50 values of 16.92 ± 0.12 and 3.42 ± 0.45 μM, respectively. This is the first time that compounds 1 and 4 have been isolated from the Isodon genus and I. ternifolius has been evaluated for the PTP1B inhibitory activity.


MedPharmRes ◽  
2017 ◽  
Vol 1 (1) ◽  
pp. 15-25
Author(s):  
Dao Tran ◽  
Son Tran ◽  
Vi Nguyen ◽  
Tri Le ◽  
Minh Thai ◽  
...  

In this study, a total of twenty chalcones were synthesized via Claisen-Schmidt condensation reaction and evaluated for their in vitro acetylcholinesterase inhibitory activities using Ellman’s method. Molecular docking studies on acetylcholinesterase were performed to elucidate the interactions between these chalcone derivatives and acetylcholinesterase active site at the molecular level. From the series, six compounds (S1-5 and S17) exhibited strong acetylcholinesterase inhibitory activities with IC50 values below 100 µM compared to the parent unsubstituted chalcone. Compound S17 (4’-amino-2-chlorochalcone) showed the strongest acetylcholinesterase inhibitory activity in the investigated group with IC50 value of 36.10 µM. Molecular modeling studies were consistent with the results of in vitro acetylcholinesterase inhibitory activities, and chalcone S17 could be considered as a potential lead compound for the development of new acetylcholinesterase inhibitors.


2019 ◽  
Vol 7 (4.14) ◽  
pp. 183 ◽  
Author(s):  
N I.I. Nor Azman ◽  
N Hashim ◽  
R Ahmad

Muntingia calabura Linn. also known locally as “ceri kampung” is a plant of the family Elaeocarpaceae. The plant has been reported to possess several medicinal properties including reducing high blood pressure, lowering cholesterol level and controlling Type 2 diabetes. Type 2 diabetes is usually related to postprandial hyperglycemia, which is related to the rise of blood sugar level after a meal. This condition can be controlled by α-glucosidase inhibitors which inhibit the enzyme from catalyzing the liberation of glucose from carbohydrates in the digestive tract. Despite many biological studies reported for the plant, its antidiabetic potential has not been widely explored. Thus the aim of this study was to find potential α-glucosidase inhibitors from 16 extracts of M. calabura as a therapeutic approach in decreasing postprandial hyperglycemia. The hexane (Hx), ethyl acetate (Ea), 75% ethanol (Et) and aqueous (Aq) extracts of four parts (fruit, leaf, stem and root) of M. calabura (collected from Bangi, Selangor) were screened for their a-glucosidase inhibitory activities at 50.00, 25.00, 12.50, 6.25, 3.13, 1.56 and 0.78 ppm prepared via two-fold serial dilution against the positive control, acarbose. The aqueous leaf (AqL) and root extracts (AqR) exhibited very strong activities with IC50 values of 0.15 and 0.41 µg/ml  while the other extracts showed strong to moderately strong activities with IC50 values ranging from 1.83-11.66  µg/ml against acarbose (4.3 µg/ml). 


Author(s):  
May A El-manawaty ◽  
Lamiaa Gohar

Objective: Diabetes mellitus is a highly prevalent chronic disease in Egypt leading to high socioeconomic problems, especially in the cities due to the unhealthy life style. Although many drugs are available, they have many side effects. Furthermore, the body arouses resistance after a while for the drug so it should be changed every once in a while. Plants could be a good source for drugs. In Egypt, we have a rich flora which has not been subjected to systematic screening for antidiabetic activity.Methods: The aim of this work was to screen 264 plant extracts for their in vitro α-glucosidase inhibitory activity. Those extracts which gave more than 70% inhibition were screened on different concentrations and their inhibitory concentrations giving 50% activity (IC50) were calculated.Results: Out of all the tested extracts, 63 gave more than or equal 70% inhibition on α-glucosidase at the tested concentration (25 ppm). After the calculation of the IC50 values, 10 extracts were chosen for further study having 5 ppm and less IC50.Conclusion: The most active plant extract is Pinus roxburghii Sarg. branches (IC50 is 2.47 ppm).


2021 ◽  
Vol 23 (4) ◽  
Author(s):  
Thuy Thi Le Nguyen ◽  
Tung Thanh Bui ◽  
Phung Kim Phi Nguyen ◽  
Chi Minh Tran ◽  
Tu Dang Cam Phan ◽  
...  

Introduction: Bruguiera cylindrica is one of the mangrove plants belonging to Bruguiera genus. This genus is characterized by the presence of a large number of compounds, but the research on bioactivities has not been investigated so far. In the present research, the α-glucosidase inhibitory activity, as well as chemical constituents of the ethyl acetate extract of this plant, were studied. Methods: The chemical structures of two new compounds were elucidated by spectroscopic and computational methods. Results: Two new compounds, benzobrugierol (1) and bruguierine (2), were isolated from leaves of Bruguiera cylindrica (L.) Blume, together with nine known ones, including lupeol (3), betulin (4), chrysoeriol (5), glut-5-ene-3-ol (6), cholesta-4-ene-3-one (7), 3α-(Z)-coumaroyllupeol (8), 3α-(E)-coumaroyllupeol (9), 3β-hydroxycholesta-5-ene-7-one (10) and β-sitosterol 3-O-β-D-glucopyranoside (11). Extracts and some isolated compounds were evaluated for α-glucosidase inhibitory activities. Conclusion: The results showed that most of the extracts and tested compounds exhibited activities better than the positive control acarbose, especially two new compounds 1 and 2 with their IC50 values of 17.9 ± 0.4 and 34.6 ± 0.7 (mg/mL), respectively.


2020 ◽  
Vol 16 ◽  
Author(s):  
Wang Chen ◽  
Zili Feng ◽  
Daihua Hu ◽  
Jin Meng

Background: Arylnaphthalene lignan lactones are a class of natural products containing the phenyl-naphthyl skeleton. Some arylnaphthalene lignan lactones have been used in clinical as antitumor agents, due to their cytotoxicity and inhibitory activities against DNA topoisomerase I (Topo I) and topoisomerase II (Topo II). Objective: We present the design and synthesis of arylnaphthalene lignan lactones derivatives. The inhibitory activities against Topo I and Topo IIα and antitumor activities of these compounds were assayed. Method: A series of arylnaphthalene lignan lactones derivatives have been designed and synthesized, using Diels-Alder reaction and Suzuki reaction as the key steps. Their antiproliferation activities were evaluated by sulforhodamine B assay on human breast cancer MDAMB-231, MDA-MB-435 and human cervical cancer HeLa cells. DNA relaxation assays were employed to examine the inhibitory activity of compounds 1-22 on Topo I and Topo IIα in vitro. Flow cytometry analysis was performed to study the drug effects on cell cycle progression. Results: Seven compounds exhibited modest anti-proliferation activity with IC50 values between 1.36 and 20 µM. Compounds 3, 19 and 22 showed potent inhibitory activities with IC50 values less than 1 µM. DNA relaxation assay revealed that compound 22 showed potent inhibitory activity against Topo IIα in vitro. Compound 22 also induced DNA breaks in MDA-MB-435 cells evidenced by comet tails and the accumulation of γ-H2AX foci. The ability of 22 in inducing DNA breaks mediated by Topo IIα resulted in G2/M phase arrest and apoptosis. Conclusion: This work indicates that arylnaphthalene lignan lactones derivatives represent a novel type of Topo IIα inhibitory scaffold for developing new antitumor chemotherapeutic agents.


2020 ◽  
Vol 26 ◽  
Author(s):  
Shaik Ibrahim Khalivulla ◽  
Arifullah Mohammed ◽  
Kokkanti Mallikarjuna

Background: Diabetes is a chronic disease affecting a large population worldwide and stands as one of the major global health challenges to be tackled. According to World Health Organization, about 400 million are having diabetes worldwide and it is the seventh leading cause of deaths in 2016. Plant based natural products had been in use from ancient time as ethnomedicine for the treatment of several diseases including diabetes. As a result of that, there are several reports on plant based natural products displaying antidiabetic activity. In the current review, such antidiabetic potential compounds reported from all plant sources along with their chemical structures are collected, presented and discussed. This kind of reports are essential to pool the available information to one source followed by statistical analysis and screening to check the efficacy of all known compounds in a comparative sense. This kind of analysis can give rise to few numbers of potential compounds from hundreds, whom can further be screened through in vitro and in vivo studies, and human trails leading to the drug development. Methods: Phytochemicals along with their potential antidiabetic property were classified according to their basic chemical skeleton. The chemical structures of all the compounds with antidiabetic activities were elucidated in the present review. In addition to this, the distribution and their other remarkable pharmacological activities of each species is also included. Results: The scrutiny of literature led to identification of 44 plants with antidiabetic compounds (70) and other pharmacological activities. For the sake of information, the distribution of each species in the world is given. Many plant derivatives may exert antidiabetic properties by improving or mimicking the insulin production or action. Different classes of compounds including sulfur compounds (1-4), alkaloids (5-11), phenolic compounds (12-17), tannins (18-23), phenylpropanoids (24-27), xanthanoids (28-31), amino acid (32), stilbenoid (33), benzofuran (34), coumarin (35), flavonoids (36-49) and terpenoids (50-70) were found to be active potential compounds for antidiabetic activity. Of the 70 listed compounds, majorly 17 compounds are from triterpenoids, 13 flavonoids and 7 are from alkaloids. Among all the 44 plant species, maximum number (7) of compounds are reported from Lagerstroemia speciosa followed by Momordica charantia (6) and S. oblonga with 5 compounds. Conclusion: This is the first paper to summarize the established chemical structures of phytochemicals that have been successfully screened for antidiabetic potential and their mechanisms of inhibition. The reported compounds could be considered as potential lead molecules for the treatment of type-2 diabetes. Further, molecular and clinical trials are required to select and establish the therapeutic drug candidates.


Molecules ◽  
2021 ◽  
Vol 26 (3) ◽  
pp. 739
Author(s):  
Sameh S. Elhady ◽  
Reda F. A. Abdelhameed ◽  
Mayada M. El-Ayouty ◽  
Amany K. Ibrahim ◽  
Eman S. Habib ◽  
...  

In this study isolates from Thymelaea hirsuta, a wild plant from the Sinai Peninsula of Egypt, were identified and their selective cytotoxicity levels were evaluated. Phytochemical examination of the ethyl acetate (EtOAc) fraction of the methanolic (MeOH) extract of the plant led to the isolation of a new triflavanone compound (1), in addition to the isolation of nine previously reported compounds. These included five dicoumarinyl ethers found in Thymelaea: daphnoretin methyl ether (2), rutamontine (3), neodaphnoretin (4), acetyldaphnoretin (5), and edgeworthin (6); two flavonoids: genkwanin (7) and trans-tiliroside (8); p-hydroxy benzoic acid (9) and β sitosterol glucoside (10). Eight of the isolated compounds were tested for in vitro cytotoxicity against Vero and HepG2 cell lines using a sulforhodamine-B (SRB) assay. Compounds 1, 2 and 5 exhibited remarkable cytotoxic activities against HepG2 cells, with IC50 values of 8.6, 12.3 and 9.4 μM, respectively, yet these compounds exhibited non-toxic activities against the Vero cells. Additionally, compound 1 further exhibited promising cytotoxic activity against both MCF-7 and HCT-116 cells, with IC50 values of 4.26 and 9.6 μM, respectively. Compound 1 significantly stimulated apoptotic breast cancer cell death, resulting in a 14.97-fold increase and arresting 40.57% of the cell population at the Pre-G1 stage of the cell cycle. Finally, its apoptosis-inducing activity was further validated through activation of BAX and caspase-9, and inhibition of BCL2 levels. In silico molecular docking experiments revealed a good binding mode profile of the isolates towards Ras activation/pathway mitogen-activated protein kinase (Ras/MAPK); a common molecular pathway in the development and progression of liver tumors.


Sign in / Sign up

Export Citation Format

Share Document