Quantum Dots: Next Generation of Smart Nano-Systems

2019 ◽  
Vol 7 (3) ◽  
pp. 234-245 ◽  
Author(s):  
Mohammed Asadullah Jahangir ◽  
Sadaf Jamal Gilani ◽  
Abdul Muheem ◽  
Mohammed Jafar ◽  
Mohammed Aslam ◽  
...  

Background: The amalgamation of biological sciences with nano stuff has significantly expedited the progress of biological strategies, greatly promoting practical applications in biomedical fields. Objective: With distinct optical attributes (e.g., robust photostability, restricted emission spectra, tunable broad excitation, and high quantum output), fluorescent quantum dots (QDs) have been feasibly functionalized with manageable interfaces and considerably utilized as a new class of optical probe in biological investigations. Method: In this review article, we structured the current advancements in the preparation methods and attributes of QDs. Furthermore, we extend an overview of the outstanding potential of QDs for biomedical research and radical approaches to drug delivery. Conclusion: Notably, the applications of QDs as smart next-generation nanosystems for neuroscience and pharmacokinetic studies have been explained. Moreover, recent interests in the potential toxicity of QDs are also apprised, ranging from cell investigations to animal studies.

Quantum dot is a new class of nanomaterials having size in nanometers (˂10 nm). This material has excellent photo-catalytic activity towards dyes and pollutants with great absorbance and photoluminescence properties. It shows shifting of peak in UV-FL data which indicates the excitation dependent emission spectra means tunable properties in different wavelength and this property makes it a wonderful probe for sensing application for different heavy metals, pollutants present in water. In this chapter the synthesis, properties, types, application of quantum dots and focus on the research that has been done in field of water treatment with possible future outcomes is discussed.


2010 ◽  
Vol 32 (3) ◽  
pp. 12-17 ◽  
Author(s):  
Andrew M. Smith ◽  
Mary M. Wen ◽  
Shuming Nie

Semiconductor quantum dots (QDs) are tiny light-emitting particles that have emerged as a new class of fluorescent labels for biology and medicine. Compared with traditional fluorescent probes, QDs have unique optical and electronic properties such as size-tuneable light emission, narrow and symmetric emission spectra, and broad absorption spectra that enable the simultaneous excitation of multiple fluorescence colours.


Author(s):  
Jiantai Wang ◽  
Yushuai Xu ◽  
Shenghan Zou ◽  
Chao Pang ◽  
Ruimin Cao ◽  
...  

Inorganic metal halide perovskite quantum dots (QDs) have emerged as a new class of solution-processable semiconductor materials for the next-generation display. However, such QDs commonly suffer from surface defects, resulting...


2018 ◽  
Vol 7 (2) ◽  
pp. 157-185 ◽  
Author(s):  
Weifeng Chen ◽  
Guo Lv ◽  
Weimin Hu ◽  
Dejiang Li ◽  
Shaona Chen ◽  
...  

AbstractAs a new class of fluorescent carbon materials, graphene quantum dots (GQDs) have attracted tremendous attention due to their outstanding properties and potential applications in biological, optoelectronic, and energy-related fields. Herein, top-down and bottom-up strategies for the fabrication of GQDs, mainly containing oxidative cleavage, the hydrothermal or solvothermal method, the ultrasonic-assisted or microwave-assisted process, electrochemical oxidation, controllable synthesis, and carbonization from small molecules or polymers, are discussed. Different methods are presented in order to study their characteristics and their influence on the final properties of the GQDs. The respective advantages and disadvantages of the methods are introduced. With regard to some important or novel methods, the mechanisms are proposed for reference. Moreover, recent exciting progresses on the applications of GQD, such as sensors, bio-imaging, drug carriers, and solar cells are highlighted. Finally, a brief outlook is given, pointing out the issues still to be settled for further development. We believe that new preparation methods and properties of GQDs will be found, and GQDs will play more important roles in novel devices and various applications.


Author(s):  
David Erickson ◽  
Baiyang Li ◽  
James R. Adleman ◽  
Saurabh Vyawahare ◽  
Stephen Quake ◽  
...  

Recent advancements in micro- and nanoscale fluidic manipulation have enabled the development of a new class of tunable optical structures which are collectively referred to as optofluidic devices. In this paper we will introduce our recent work directed towards the development of a spectrographic optofluidic memory. Data encoding for the memory is based on creating spectrographic codes consisting of multiple species of photoluminescent nanoparticles at discrete intensity levels which are suspended in liquids. The data cocktails are mixed, delivered and stored using a series of soft and hard-lithography microfluidic structures. Semiconductor quantum dots are ideally suited for this application due to their narrow and size tunable emission spectra and consistent excitation wavelength. Both pressure driven and electrokinetic approaches to spectral code writing have been developed and will be experimentally demonstrated here. Novel techniques for data storage and readout are also discussed and demonstrated.


2019 ◽  
Vol 20 (3) ◽  
pp. 255-262 ◽  
Author(s):  
Sounik Manna ◽  
Munmun Ghosh ◽  
Ranadhir Chakraborty ◽  
Sudipto Ghosh ◽  
Santi M. Mandal

Succumbing to Multi-Drug Resistant (MDR) bacteria is a great distress to the recent health care system. Out of the several attempts that have been made to kill MDR pathogens, a few gained short-lived success. The failures, of the discovered or innovated antimicrobials, were mostly due to their high level of toxicity to hosts and the phenomenal rate of developing resistance by the pathogens against the new arsenal. Recently, a few quantum dots were tested against the pathogenic bacteria and therefore, justified for potential stockpiling of next-generation antibacterial agents. The key players for antimicrobial properties of quantum dots are considered to be Reactive Oxygen Species (ROS). The mechanism of reaction between bacteria and quantum dots needs to be better understood. They are generally targeted towards the cell wall and membrane components as lipoteichoic acid and phosphatidyl glycerol of bacteria have been documented here. In this paper, we have attempted to simulate ZnS quantum dots and have analysed their mechanism of reaction as well as binding potential to the above bacterial membrane components using CDOCKER. Results have shown a high level of antibacterial activity towards several pathogenic bacteria which specify their potentiality for future generation antibacterial drug development.


Author(s):  
Bruce A. Pint ◽  
Sebastien Dryepondt ◽  
Michael P. Brady ◽  
Yukinori Yamamoto ◽  
Bo Ruan ◽  
...  

Alumina-forming austenitic (AFA) steels represent a new class of corrosion- and creep-resistant austenitic steels designed to enable higher temperature recuperators. Field trials are in progress for commercially rolled foil with widths over 39 cm. The first trial completed 3000 hrs in a microturbine recuperator with an elevated turbine inlet temperature and showed limited degradation. A longer microturbine trial is in progress. A third exposure in a larger turbine has passed 16,000 hrs. To reduce alloy cost and address foil fabrication issues with the initial AFA composition, several new AFA compositions are being evaluated in creep and laboratory oxidation testing at 650–800 °C and the results compared to commercially fabricated AFA foil and conventional recuperator foil performance.


2007 ◽  
Vol 06 (03n04) ◽  
pp. 215-219
Author(s):  
E. P. DOMASHEVSKAYA ◽  
V. A. TEREKHOV ◽  
V. M. KASHKAROV ◽  
S. YU. TURISHCHEV ◽  
S. L. MOLODTSOV ◽  
...  

Ultrasoft X-ray emission spectra (USXES) and X-ray absorption near-edge structure (XANES) spectra with the use of synchrotron radiation in the range of P L2,3-edges were obtained for the first time for nanostructures with InP quantum dots grown on GaAs 〈100〉 substrates by vapor-phase epitaxy from metal–organic compounds. These spectra represent local partial density of states in the valence and conduction bands. The additional XANES peak is detected; its intensity depends on the number of monolayers forming quantum dots. Assumptions are made on the band-to-band origin of luminescence spectra in the studied nanostructures.


2016 ◽  
Vol 06 (02) ◽  
pp. 1630003 ◽  
Author(s):  
Zhen Fan ◽  
Jingsheng Chen ◽  
John Wang

Ferroelectric random access memory (FeRAM) based on conventional ferroelectric perovskites, such as Pb(Zr,Ti)O3 and SrBi2Ta2O9, has encountered bottlenecks on memory density and cost, because those conventional perovskites suffer from various issues mainly including poor complementary metal-oxide-semiconductor (CMOS)-compatibility and limited scalability. Next-generation cost-efficient, high-density FeRAM shall therefore rely on a material revolution. Since the discovery of ferroelectricity in Si:HfO2 thin films in 2011, HfO2-based materials have aroused widespread interest in the field of FeRAM, because they are CMOS-compatible and can exhibit robust ferroelectricity even when the film thickness is scaled down to below 10 nm. A review on this new class of ferroelectric materials is therefore of great interest. In this paper, the most appealing topics about ferroelectric HfO2-based materials including origins of ferroelectricity, advantageous material properties, and current and potential applications in FeRAM, are briefly reviewed.


2017 ◽  
Vol 5 (31) ◽  
pp. 6300-6306 ◽  
Author(s):  
Lin Cao ◽  
Xiangqing Li ◽  
Lixia Qin ◽  
Shi-Zhao Kang ◽  
Guodong Li

A new class of Cyt c detection fluorescence sensor based on graphene quantum dots supported by graphene oxide has been facilely developed. The sensor shows a high sensitivity and selectivity for Cyt c detection, and further exhibits favorable intracellular imaging in A549 cells.


Sign in / Sign up

Export Citation Format

Share Document