scholarly journals Multifunctional Hydroxyapatite-Based Nanoparticles for Biomedicine: Recent Progress in Drug Delivery and Local Controlled Release

Author(s):  
Mohammad Rasouli ◽  
Seyedeh Farnaz Darghiasi ◽  
Seyed Morteza Naghib ◽  
Mehdi Rahmanian

: As calcium phosphate micro/nano-structures (CPMNS) have been suggested, many protocols have been exploited to design new formulations. CPMNS are similar to bone mineral from the point of view of structure and chemical composition. Some of them such as hydroxyapatite (HAp) have been commercialized, and they demonstrated sufficient efficiency as hard tissue replacements for various purposes. Due to their biocompatibility, bioaccumulation, bioactivity, osteogenic activity, and anticancer properties as well as great resemblance to body organs such as bones, these substances are suitable options for the diagnosis and treatment of various diseases. Therefore, recent advances of HAp applications in drug delivery for various diseases, such as cancer, bone disease, and tooth inflammation are reviewed. Also, their implementation for several kinds of drugs including anticancer, anti-inflammatory, antibiotics, growth factors and analgesics are investigated.

2020 ◽  
Vol 26 (36) ◽  
pp. 4551-4568
Author(s):  
Mohammad Kashif Iqubal ◽  
Sadaf Saleem ◽  
Ashif Iqubal ◽  
Aiswarya Chaudhuri ◽  
Faheem Hyder Pottoo ◽  
...  

A wound refers to the epithelial loss, accompanied by loss of muscle fibers collagen, nerves and bone instigated by surgery, trauma, frictions or by heat. Process of wound healing is a compounded activity of recovering the functional integrity of the damaged tissues. This process is mediated by various cytokines and growth factors usually liberated at the wound site. A plethora of herbal and synthetic drugs, as well as photodynamic therapy, is available to facilitate the process of wound healing. Generally, the systems used for the management of wounds tend to act through covering the ruptured site, reduce pain, inflammation, and prevent the invasion and growth of microorganisms. The available systems are, though, enough to meet these requirements, but the involvement of nanotechnology can ameliorate the performance of these protective coverings. In recent years, nano-based formulations have gained immense popularity among researchers for the wound healing process due to the enhanced benefits they offer over the conventional preparations. Hereupon, this review aims to cover the entire roadmap of wound healing, beginning from the molecular factors involved in the process, the various synthetic and herbal agents, and combination therapy available for the treatment and the current nano-based systems available for delivery through the topical route for wound healing.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 229
Author(s):  
Filippo Silva ◽  
Leopoldo Sitia ◽  
Raffaele Allevi ◽  
Arianna Bonizzi ◽  
Marta Sevieri ◽  
...  

Protein nanocages represent an emerging candidate among nanoscaled delivery systems. Indeed, they display unique features that proved to be very interesting from the nanotechnological point of view such as uniform structure, stability in biological fluids, suitability for surface modification to insert targeting moieties and loading with different drugs and dyes. However, one of the main concerns regards the production as recombinant proteins in E. coli, which leads to a product with high endotoxin contamination, resulting in nanocage immunogenicity and pyrogenicity. Indeed, a main challenge in the development of protein-based nanoparticles is finding effective procedures to remove endotoxins without affecting protein stability, since every intravenous injectable formulation that should be assessed in preclinical and clinical phase studies should display endotoxins concentration below the admitted limit of 5 EU/kg. Different strategies could be employed to achieve such a result, either by using affinity chromatography or detergents. However, these strategies are not applicable to protein nanocages as such and require implementations. Here we propose a combined protocol to remove bacterial endotoxins from nanocages of human H-ferritin, which is one of the most studied and most promising protein-based drug delivery systems. This protocol couples the affinity purification with the Endotrap HD resin to a treatment with Triton X-114. Exploiting this protocol, we were able to obtain excellent levels of purity maintaining good protein recovery rates, without affecting nanocage interactions with target cells. Indeed, binding assay and confocal microscopy experiments confirm that purified H-ferritin retains its capability to specifically recognize cancer cells. This procedure allowed to obtain injectable formulations, which is preliminary to move to a clinical trial.


Author(s):  
Debabrata Ghosh Dastidar ◽  
Dipanjan Ghosh ◽  
Gopal Chakrabarti

Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1347
Author(s):  
Arbanah Muhammad ◽  
Dabin Lee ◽  
Yonghun Shin ◽  
Juhyun Park

Porous polysaccharides have recently attracted attention due to their porosity, abundance, and excellent properties such as sustainability and biocompatibility, thereby resulting in their numerous applications. Recent years have seen a rise in the number of studies on the utilization of polysaccharides such as cellulose, chitosan, chitin, and starch as aerogels due to their unique performance for the fabrication of porous structures. The present review explores recent progress in porous polysaccharides, particularly cellulose and chitosan, including their synthesis, application, and future outlook. Since the synthetic process is an important aspect of aerogel formation, particularly during the drying step, the process is reviewed in some detail, and a comparison is drawn between the supercritical CO2 and freeze drying processes in order to understand the aerogel formation of porous polysaccharides. Finally, the current applications of polysaccharide aerogels in drug delivery, wastewater, wound dressing, and air filtration are explored, and the limitations and outlook of the porous aerogels are discussed with respect to their future commercialization.


2009 ◽  
Vol 5 (7) ◽  
pp. 2752-2762 ◽  
Author(s):  
M. Espanol ◽  
R.A. Perez ◽  
E.B. Montufar ◽  
C. Marichal ◽  
A. Sacco ◽  
...  

Foods ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1510
Author(s):  
María Ángeles Rivas ◽  
Rocío Casquete ◽  
María de Guía Córdoba ◽  
Santiago Ruíz-Moyano ◽  
María José Benito ◽  
...  

The objective of this study was to evaluate, from a technological and nutritional point of view, the chemical composition and functional properties of the industrial winemaking by-products, namely skins, stems and lees. The chemical and physical characteristics, as well as the functional properties (fat and water retention and swelling capacity, antioxidant capacity, and their prebiotic effect), of the dietary fibre of these by-products were studied. The results showed that the skins, stems, and lees are rich in fibre, with the stem fibre containing the highest amounts of non-extractable polyphenols attached to polysaccharides with high antioxidant activity and prebiotic effect. Lee fibre had the highest water retention capacity and oil retention capacity. The results reveal that winemaking by-products could be used as a source of dietary fibre with functional characteristics for food applications.


Sign in / Sign up

Export Citation Format

Share Document