scholarly journals STUDY ON THE THERMAL STABILITY OF EPA AND DHA IN MUJAHIR (Oreochromis mossambicus) FISH OIL

2010 ◽  
Vol 5 (2) ◽  
pp. 152-155 ◽  
Author(s):  
Ngatidjo Hadipranoto

EPA (Eicosapentaenoic acid) and DHA (Docosahexaenoic acid) content in common fresh water fish : mujahir (Oreochromis mossambicus) after indirect heating were analysed. The aims of this study were to determine the effect of indirect heating process and α-tocopherol additions on both fatty acid stability.Lipids content in the mujahir fillets were extracted by Folch method using chloroform-metanol (2:1) mixture. Fatty acids in fish oil were converted to fatty acid methyl esters and then injected into gas chromatography to determine the EPA and DHA concentration. Operating condition of gas chromatography were programmed as follows: injection port temperature at 270 oC, detector at 280 oC, initial column temperature at 200 oC, and the final at 280 oC, the carrier gas was helium with flow rate of 10 ml per minute and temperature of column was increased gradually at 10 oC per minute. The effect of α-tocopherol addition on the stability of EPA and DHA was studied by adding α-tocopherol at 50 to 200 mg per kilogram sample before indirect heating process was carried out.The analysis of mujahir fish oil showed that the content of EPA and DHA in 100 grams fresh sample was 105 and 406,5 mg respectivelly. Indirect heating caused the EPA and DHA content decreased significantly. The addition of α-tocopherol results in a positive corelation between α-tocopherol concentration added and the decrease of EPA and DHA content during the heating process.   Keywords: fatty acid, eicosapentaenoic acid, docosahexaenoic acid




2020 ◽  
Vol 21 (14) ◽  
pp. 4871
Author(s):  
Francesco Bordignon ◽  
Silvia Martínez-Llorens ◽  
Angela Trocino ◽  
Miguel Jover-Cerdá ◽  
Ana Tomás-Vidal

The present study evaluated the effects of wash-out on the fatty acid (FA) composition in the muscles of Mediterranean yellowtail. After 109 days during which fish were fed either a fish oil (FO)-based diet (FO 100) or a diet (FO 0) in which FO was completely substituted by vegetable oils, all fish were subjected to a wash-out with FO 100 diet for 90 days. The FA profile of muscles in fish fed FO 0 diet at the beginning of the experiment reflected that of dietary vegetable oils, rich in linoleic acid (LA), and α-linolenic acid (ALA), and was deficient in AA (arachidonic acid), EPA (eicosapentaenoic acid), and DHA (docosahexaenoic acid). No essential FA were fully restored in fish previously fed FO 0 diet on 45th or 90th day of wash-out. At the end of wash-out, the FA composition showed that AA, EPA, and DHA in the white muscles increased by +33%, +16%, and +43% (p < 0.001), respectively. Similarly, AA and DHA in the red muscles increased by +33% and +41% respectively, while EPA remained similar to fish fed FO 0 diet exclusively. Therefore, a 90-d wash-out can partially improve the FA profile in muscles of Mediterranean yellowtail previously fed vegetable oil-based diets.



2001 ◽  
Vol 2001 ◽  
pp. 199-199 ◽  
Author(s):  
C. Rymer ◽  
C. Dyer ◽  
D.I. Givens ◽  
R. Allison

The dietary essential fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are predominantly found in fish oil, but fish consumption in the UK is low. Increasing the yield of EPA and DHA in cows’ milk would increase human intakes of EPA and DHA, and this can be achieved by including fish oil in cows’ diets. However, because EPA and DHA are susceptible to rumen biohydrogenation, their transfer efficiency into milk is low.In vitroobservations by Gulatiet al. (1999) suggested that if the concentration of fish oil in the rumen exceeded 1 mg/ml, EPA and DHA were not hydrogenated. The objectives of this study were therefore to determine the relationships between fish oil intake by dairy cows, and the probable concentrations of fish oil in the cows’ rumen, with the yield of EPA and DHA in their milk.



Nutrients ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 3114
Author(s):  
Dhavamani Sugasini ◽  
Poorna C. R. Yalagala ◽  
Papasani V. Subbaiah

Although decreased retinal docosahexaenoic acid (DHA) is a known risk factor for retinopathy, currently available omega-3 fatty acid supplements, which are absorbed as triacylglycerol (TAG), do not significantly enrich retinal DHA. We tested the hypothesis that lysophospahtidylcholine (LPC)-DHA which is absorbed as phospholipid, would efficiently increase retinal DHA because of the presence of LPC-specific transporter at the blood–retina barrier. In normal rats, LPC-DHA and di-DHA phosphatidylcholine (PC), which generates LPC-DHA during digestion, increased retinal DHA by 101% and 45%, respectively, but TAG-DHA had no significant effect at the same dose (40 mg/kg, 30 days). In normal mice, both sn-1 DHA LPC and sn-2 DHA LPC increased retinal DHA by 80%, but free DHA had no effect. Lipase-treated krill oil (which contains LPC-DHA and LPC-EPA (eicosapentaenoic acid), but not normal krill oil (which has little LPC), increased both retinal DHA (+76%) and EPA (100-fold). Fish oil, however, had no effect, whether lipase-treated or not. These studies show that retinal DHA can be efficiently increased by dietary LPC-DHA, but not by TAG-DHA or free DHA. Since DHA is known to be protective against retinopathy and other eye diseases, this study provides a novel nutraceutical approach for the prevention/treatment of these diseases.



2019 ◽  
Vol 97 (7) ◽  
pp. 3071-3088 ◽  
Author(s):  
Danielle N Coleman ◽  
Ana C Carranza Martin ◽  
Yukun Jin ◽  
Kichoon Lee ◽  
Alejandro E Relling

Abstract The objective of this study was to evaluate the effects of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) supplementation to ewes during late gestation on finishing lamb liver and adipose tissue fatty acid (FA) profile and gene expression. Lambs born from ewes supplemented with Ca salts of EPA + DHA, or palm FA distillate (PFAD) high in palmitic and oleic acid at 0.39% DM during the last 50 d of gestation were used. Lambs were weaned at 61 d of age and adapted to a high concentrate diet for 1.5 mo. After adaptation, 74 lambs (28 pens) were blocked by sex and BW and used in a 2 × 2 factorial arrangement of treatments using the factors of dam supplementation (DS) and lamb supplementation (LS) of Ca salts of EPA + DHA or PFAD at 1.48% DM. Lambs were slaughtered after 42 d and liver and adipose tissue collected for FA and gene expression analysis. Liver concentrations of EPA and DHA were greater (P < 0.01) with LS of EPA + DHA vs. PFAD during the finishing period. In adipose tissue, a lamb × dam interaction was observed for EPA (P = 0.02) and DHA (P = 0.04); LS of EPA + DHA increased EPA and DHA, but the increase was greatest in lambs born from ewes supplemented with PFAD. No lamb × dam treatment interactions were observed for gene expression in liver tissue (P > 0.10). Hepatic mRNA abundance of hormone-sensitive lipase (HSL; P = 0.01) was greater in lambs born from EPA + DHA ewes vs. lambs from PFAD ewes. mRNA expression of stearoyl-CoA desaturase (P < 0.01), fatty acid synthase (P = 0.01), Δ5-desaturase (P < 0.01), and Δ6-desaturase (P < 0.01) were decreased in liver of EPA + DHA lambs. A significant lamb × dam diet interaction was observed for elongation of very long chain fatty acid 2 in adipose tissue (P = 0.01); lambs supplemented with the same FA as their dams had lower expression. Expression of HSL tended (P = 0.08) to be decreased in adipose of EPA + DHA lambs born from EPA + DHA ewes. The changes in mRNA expression suggest that lipogenesis decreased, and lipolysis increased in lamb liver with EPA + DHA vs. PFAD supplementation during the finishing period. In adipose tissue, changes suggest that lipogenesis decreased in lambs born from EPA + DHA supplemented dams and supplemented with EPA + DHA during the finishing period. In addition, these results suggest an interaction between supplementation of FA to dams during late gestation on lamb response of adipose tissue, but not liver, to FA supplementation during the finishing period.



2013 ◽  
Vol 26 (1) ◽  
pp. 27-36 ◽  
Author(s):  
Eliana Aparecida Fagundes Queiroz Bortolozo ◽  
Elenise Sauer ◽  
Marli da Silva Santos ◽  
Sueli Regina Baggio ◽  
Guataçara dos Santos Junior ◽  
...  

OBJECTIVE: This study assessed the impact of supplementing the diet of women during pregnancy and lactation with fish oil containing the omega-3 fatty acid docosahexaenoic acid, and its influence on the composition of human milk. METHODS: The sample comprised 60 women aged 18 to 38 years with appropriate dietary pattern, all of them healthy and nonsmokers. The intervention consisted of a daily supplementation with fish oil capsules that corresponded to a daily intake of 315mg of docosahexaenoic acid and 80mg of eicosapentaenoic acid during the third trimester of pregnancy and the first three months postpartum. The total fat content and fatty acid profile of their milk were determined by creamatocrit and gas chromatography. Descriptive statistics were used for data analysis and the significance level was set at p<0.05. RESULTS: There was no statistical difference between the fat contents of the study (fish oil capsules) and control (capsules containing corn starch as filler) groups. However, the milk of women taking fish oil contained higher docosahexaenoic and eicosapentaenoic acid levels 30 and 60 days after delivery. These results demonstrate that high omega-3 intake can influence its concentration in human milk. CONCLUSIONS: Given the importance of docosahexaenoic acid in the neonatal period, it is appropriate for pregnant and breastfeeding women to supplement on long-chain polyunsaturated fatty acids, which may be done by adding fish oil to the regular diet.



Marine Drugs ◽  
2021 ◽  
Vol 19 (2) ◽  
pp. 113
Author(s):  
Marine Remize ◽  
Yves Brunel ◽  
Joana L. Silva ◽  
Jean-Yves Berthon ◽  
Edith Filaire

N-3 polyunsaturated fatty acids (n-3 PUFAs), and especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are essential compounds for human health. They have been proven to act positively on a panel of diseases and have interesting anti-oxidative, anti-inflammatory or anti-cancer properties. For these reasons, they are receiving more and more attention in recent years, especially future food or feed development. EPA and DHA come mainly from marine sources like fish or seaweed. Unfortunately, due to global warming, these compounds are becoming scarce for humans because of overfishing and stock reduction. Although increasing in recent years, aquaculture appears insufficient to meet the increasing requirements of these healthy molecules for humans. One alternative resides in the cultivation of microalgae, the initial producers of EPA and DHA. They are also rich in biochemicals with interesting properties. After defining macro and microalgae, this review synthesizes the current knowledge on n-3 PUFAs regarding health benefits and the challenges surrounding their supply within the environmental context. Microalgae n-3 PUFA production is examined and its synthesis pathways are discussed. Finally, the use of EPA and DHA in food and feed is investigated. This work aims to define better the issues surrounding n-3 PUFA production and supply and the potential of microalgae as a sustainable source of compounds to enhance the food and feed of the future.



2013 ◽  
Vol 32 (4) ◽  
pp. 636-642 ◽  
Author(s):  
Adriana Fogagnolo Mauricio ◽  
Elaine Minatel ◽  
Humberto Santo Neto ◽  
Maria Julia Marques




2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Wan-Chi Chang ◽  
Jisun So ◽  
Stefania Lamon-Fava

AbstractThe omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) affect cell function and metabolism, but the differential effects of EPA and DHA are not known. In a randomized, controlled, double-blind, crossover study, we assessed the effects of 10-week supplementation with EPA-only and DHA-only (3 g/d), relative to a 4-week lead-in phase of high oleic acid sunflower oil (3 g/day, defined as baseline), on fasting serum metabolites in 21 subjects (9 men and 12 post-menopausal women) with chronic inflammation and some characteristics of metabolic syndrome. Relative to baseline, EPA significantly lowered the tricarboxylic acid (TCA) cycle intermediates fumarate and α-ketoglutarate and increased glucuronate, UDP-glucuronate, and non-esterified DHA. DHA significantly lowered the TCA cycle intermediates pyruvate, citrate, isocitrate, fumarate, α-ketoglutarate, and malate, and increased succinate and glucuronate. Pathway analysis showed that both EPA and DHA significantly affected the TCA cycle, the interconversion of pentose and glucuronate, and alanine, and aspartate and glutamate pathways (FDR < 0.05) and that DHA had a significantly greater effect on the TCA cycle than EPA. Our results indicate that EPA and DHA exhibit both common and differential effects on cell metabolism in subjects with chronic inflammation and some key aspects of metabolic syndrome.



Sign in / Sign up

Export Citation Format

Share Document