scholarly journals Pengaruh Ukuran Serbuk dan Penambahan Tempurung Kelapa Terhadap Kualitas Pelet Kayu Sengon

2019 ◽  
Vol 13 (2) ◽  
pp. 170
Author(s):  
Anindya Husnul Hasna ◽  
J. P. Gentur Sutapa ◽  
Denny Irawati

Limbah industri kayu sengon menjadi salah satu bahan baku dalam pembuatan pelet kayu karena potensinya yang cukup besar. Akan tetapi pelet kayu sengon memiliki kerapatan serta nilai kalor yang rendah. Untuk meningkatkan sifat bahan bakar pelet kayu Sengon maka dilakukan pencampuran bahan dengan serbuk tempurung kelapa. Penelitian ini menggunakan bahan dari limbah serbuk gergaji sengon (Falcataria moluccana (Miq.)) dan limbah tempurung kelapa (Cocos nucifera). Masing-masing bahan dibuat partikel pada 3 kelompok ukuran yaitu 20-40 mesh, 40-60 mesh, dan 60-80 mesh. Ke dalam serbuk kayu sengon ditambahkan serbuk tempurung kelapa dengan penambahan 25%, 50%, dan 75%, sedangkan untuk kontrol (0%) adalah pelet kayu sengon tanpa penambahan tempurung kelapa. Pelet dibuat dengan menggunakan single-pelletizer pada suhu ruang dengan tekanan 100 kg/cm2. Hasil penelitian menunjukkan kombinasi bahan baku yang berbeda (sengon dan tempurung kelapa) memberikan pengaruh terhadap sifat fisika dan kimia pelet kayu. Semakin tinggi persentase campuran serbuk tempurung kelapa pada pelet kayu sengon maka semakin tinggi keteguhan tekan, karbon terikat, total karbon dan nilai kalor, sedangkan untuk kadar zat mudah menguap, kadar abu, kadar N, S, dan H semakin rendah. Pelet terbaik dihasilkan pada kombinasi penambahan tempurung kelapa 50% dengan ukuran 60-80 mesh yang memiliki sifat kadar abu yang rendah (0,79%) dan nilai kalor yang tinggi (5129,07 Kal/g), serta keteguhan tekan yang masih cukup tinggi (444,75N). Hasil tersebut memenuhi standar SNI 8021:2014.Effect of Particle Size and Addition of Coconut Cell on the Quality of Sengon Wood PelletAbstractThe waste of sengon (Falcataria moluccana) industry becomes one of the raw materials in the manufactured of wood pellets, because of its potency. However F. moluccana pellets posses low density and calorific value. To improve its properties, a materials mixing with coconut shell parcticles was conducted. This study used material from the waste of sengon (F. moluccana) sawdust and the waste of coconut (Cocos nucifera). Particles from those materials were made on 3 sizes which are 20-40 mesh, 40-60 mesh, and 60-80 mesh. 25%, 50%, and 75% of coconut shell were added into sengon sawdust, while woode pellets with no additions were used as a control. Pellets are made using single-pelletizer at room temperature with a pressure of 100 kg/cm2. The research results showed if the different material combination (sengon and coconut shell) gave significant effect to physical properties and chemical content of wood pellets. Higher percentage of coconut shell gives higher compressive strength, fixed carbon content, total of carbon, and calorific value, while volatile matter, ash content, N, S, and H content showed lower value. The best pellet was resulted from combination between coconut shell addition 50% and nesh size 60 – 80 which posses quite low ash content (0.79%) and high calorific value (5129.07 Kal/g), and high compression strength (444.75 N). This result has qualified the standard of SNI 8021:2014.

Author(s):  
Yusraida Khairani Dalimunthe ◽  
Sugiatmo Kasmungin ◽  
Listiana Satiawati ◽  
Thariq Madani ◽  
Teuku Ananda Rizky

The purpose of this study was to see the best quality of briquettes from the main ingredient of coconut shell waste<br />with various biomass additives to see the calorific value, moisture content, ash content, and volatile matter<br />content of the biomass mixture. Furthermore, further research will be carried out specifically to see the quality of<br />briquettes from a mixture of coconut shell waste and sawdust. The method used in this research is to conduct a<br />literature study of various literature related to briquettes from coconut shell waste mixed with various additives<br />specifically and then look at the best quality briquettes produced from these various pieces of literature. As for<br />what is determined as the control variable of this study is coconut shell waste and as an independent variable,<br />namely coffee skin waste, rice husks, water hyacinth, Bintaro fruit, segon wood sawdust, coconut husk, durian<br />skin, bamboo charcoal, areca nut skin, and leather waste. sago with a certain composition. Furthermore, this<br />paper also describes the stages of making briquettes from coconut shell waste and sawdust for further testing of<br />the calorific value, moisture content, ash content, volatile matter content on a laboratory scale for further<br />research. From various literatures, it was found that the highest calorific value was obtained from a mixture of<br />coconut shell waste and bamboo charcoal with a value of 7110.7288 cal / gr and the lowest calorific value was<br />obtained from a mixture of coconut shell waste and sago shell waste with a value of 114 cal / gr, then for the value<br />The highest water content was obtained from a mixture of coconut shell waste and rice husk with a value of<br />37.70% and the lowest water content value was obtained from a mixture of coconut shell waste 3.80%, then for the<br />highest ash content value was obtained from a mixture of coconut shell waste and coffee skin with a value of<br />20.862% and for the lowest ash content value obtained from a mixture of coconut shell and Bintaro fruit waste,<br />namely 2%, and for the highest volatile matter content value obtained from a mixture of coconut shell and coconut<br />husk waste with a value of 33.45% and for the value of volatile matter levels The lowest was obtained from a<br />mixture of coconut shell waste and sago skin waste with a value of 33 , 45%.


2018 ◽  
Vol 2 (1) ◽  
pp. 91-100
Author(s):  
Sofia Mustamu ◽  
Gysberth Pattiruhu

Biopelet is one of the renewable energy alternatives that have uniformity of size, shape, density, and energy content. The purpose of this study was to examine the characteristics of biopelet consisting of a mixture of cajeput and gondorukem, and to determine the composition of the raw materials that can produce a biopelet with the best quality. The compositions of a mixture in this research are as follow 95%:5%, 90%:10%, 80%:20%, 70%:30%, 60%:40%, 50%:50%, cajeput 100% and gondorukem 100%. The manufacture of biopelet used a 20 mesh of dust with the pressure of 526.4 kg/cm2  at a temperature of 200 ◦C for 15 minutes. Types of tests performed on biopelet include density, moisture content, volatile matter, ash content, carbon bonded, and calorific value. The results of the best quality of biopelet was in the percentage of cajeput and gondorukem was 70%:30%,  tests showed densities of biopelet 0,84 g/cm3, moisture content5,89%, ash content 2,42%, volatile matter 73,99%, fixed carbon 18,96%, and calorific value 5152 kkal/kg.


2021 ◽  
Vol 328 ◽  
pp. 01019
Author(s):  
Siswanto ◽  
Kindriari Nurma Wahyusi ◽  
Renova Panjaitan

Contributing to the solution-finding for the availability of dwindling fossil energy, this study produced charcoal fuel from a biomass mixture of coconut shell waste and coal, using adhesive from meranti wood. The research was conducted by observing the effect of the carbonization temperature parameters and the amount of coal used in the mixture on the quality of charcoal fuel. The quality was evaluated on the calorific value, water content, and ash content. In addition, the data were analyzed mathematically using the response surface methodology to determine the interaction effect of independent variables on the response and to obtain the best conditions for producing charcoal fuel with the desired quality in the variable range of carbonization temperature of 300oC-500oC and coal mass in the range 10-30 grams. The results revealed that the temperature parameter had a significant effect on the calorific value, water content, and ash content. While the amount of coal mass did not significantly affect the calorific value and ash content but significantly affected the water content of charcoal fuel. The carbonization temperature and the amount of coal in the mixture of raw materials suggested were 409.625oCand10gr.


2020 ◽  
Vol 154 ◽  
pp. 02003
Author(s):  
Grzegorz Pełka ◽  
Wojciech Luboń ◽  
Przemysław Pachytel

In the municipal and residential sector in Poland, as many as 50% of households are heated by solid fuel boilers. Most often these are, unfortunately, inefficient boilers, fired with low-quality coal. This study characterizes the market of boilers for solid fuels in Poland, and also presents the main apportionment of these devices, due to the different criteria that characterize them. The current legal changes in the scope of energy and emission requirements for solid fuel boilers are also discussed. The main purpose of this work is to analyze the real efficiency of the solid fuel over-fired boiler used, depending on the fuel burned in it. The process of burning selected fuels (seasoned wood, coal and pea coal) in the boiler was preceded by tests of these fuels to determine their energy parameters, such as moisture, ash content, the share of volatile matter and calorific value. In the next step, the energy efficiency obtained by the tested solid fuel boiler during the combustion of selected solid fuels was compared. The highest efficiency was achieved during the combustion of pea coal, and the lowest was achieved during the combustion of wood. In any case, the nominal efficiency value was achieved. Solutions that could improve the quality of the combustion process in this type of boiler were proposed.


2021 ◽  
Vol 9 (3) ◽  
pp. 282
Author(s):  
Fonny Rianawati ◽  
Zainal Abidin ◽  
Muhammad Naparin

This study aims to conduct a study of the quality value of briquettes made from mixing straw and rice husks which include a flame test and combustion rate which is expected to be used to educate people around the forest by providing innovation and technology regarding the use of post-harvest waste. The results showed that the value of the quality of briquettes made from variations in the mixing of straw and rice husks including the flame test of the combustion rate obtained results, for treatment A (100% straw) of 0.68 gr/minute, treatment B (100% husk) of 0 ,57 gr/minute, treatment C (Husk 75% + Straw 25%) was 0.40 gr/minute, treatment D (Husk 25% + Straw 75%) was 0.46 r/minute and treatment E (Husk 50% + Straw 50%) of 0.43 gr/minute. The value of the flame to boiling time for treatment A = 38.62 minutes, treatment B = 31.05, treatment C = 23.22 minutes, treatment D = 36.05 and treatment E = 27.95 minutes. Density values of all treatments, and the water content for treatment B and treatment C can meet SII. While other parameters: ash content, volatile matter, bound carbon and calorific value still cannot meet the standards, so it is recommended to carry out further research with other variations of treatment, in order to obtain briquettes with quality that can meet the standards.


Author(s):  
A. V. Grytsenko ◽  
N. V. Vnykova ◽  
O. I. Pozdnyakova

Thermal power plants remain one of the main sources of environmental pollution. The deterioration of the quality of traditional carbon-containing energy resources leads to the need to develop technologies for co-combustion of biofuel and coal at small and large power plants. The paper proposes the concept of using solid waste from tire recycling by adding to the composition of the mixed fuel “coal – wood waste” as a substitute for coal slag, which is formed during the utilization of worn-out tires by pyrolysis. The aim of the work was to determine the possibility of increasing the calorific value of wood pellets by co-firing with pyrolysis slag instead of coal without increasing the burden on the environment. At the same time, the following tasks have been set: to determine the lowest combustion heat of mixed fuels and assess its change when replacing coal with slag; to determine moisture content, total sulfur content, volatile matter yield, ash content of mixed fuels according to standard methods; to assess the change in these parameters when replacing coal with slag at the same component ratios; to determine the optimal ratios of components in mixed fuels, which will not increase the burden on the environment when replacing coal with pyrolysis slag. It has been determined that replacing coal with slag results in an increase in calorific value by 37–45 %, a decrease in ash content by 37–42 %, and an increase in the yield of volatile substances. At the same time, the sulfur content increases by 5.6–18 %. The use of traditional cleaning equipment is recommended in order to reduce the emission of sulfur dioxide. The research results make it possible to substantiate the possibility of replacing coal with slag in mixed fuels at certain ratios of components. A new direction of using solid products from recycling of rubber products, i.e. worn-out tires, has been proposed by the pyrolysis method in mixed fuels “slag-wood pellets” for small and medium-sized power plants.


2021 ◽  
Vol 914 (1) ◽  
pp. 012069
Author(s):  
S Wibowo ◽  
K Arief ◽  
T K Waluyo

Abstract Wood pellets are renewable fuels from biomass which can be an alternative substitute for petroleum fuels. One of the raw materials for making wood pellets is sawdust from the sawmill industry or other wood craftsmen. Sawdust waste that dumped for a long time will reduce its moisture content (over-dry) and will be difficult to form into pellets. In this paper, we studied the effect of adding liquid solution ie. water, tapioca starch solution, pure molasses solution and dilute molasses solution on over-dry sawdust to the characteristic properties of wood pellet torrefaction. The sawdust material was collected from the wood sawmill in the Bogor District. There were five treatments i.e sawdust (control), sawdust + 10% water, sawdust + 10% tapioca starch solution, sawdust + 10% pure molasses solution, sawdust + 10% diluted molasses solution. The wood pellet torrefaction properties were investigated using a manual hot press at the temperature of 210°C. The results showed that the addition of pure molasses solution produced better pellets than other treatments, with properties i.e water content of 2.65%, the ash content of 1.45%, volatile matter 76.72%, fixed carbon 19.18%, the calorific value of 19.56 MJkg−1, density 0.84 gcm−3, and compressive strength 52.22 kgcm−2.


Author(s):  
J. M. Makavana ◽  
P. N. Sarsavadia ◽  
P. M. Chauhan

Bio-char is carbon-rich product generated from biomass through batch type slow pyrolysis. In this study, the effects of pyrolysis temperature and residence time on the yield and properties of bio-chars obtained from shredded cotton stalks were investigated. Safely said that the quality of bio-char of shredded cotton stalk obtained at 500°C temperature and 240 min is best out of the all experimental levels of variables of temperature and residence time. At this temperature and residence time, the quality of bio-char in terms higher heating value (8101.3cal /g or 33.89 MJ/kg), nitrogen (1.56%), Carbon (79.30%), and C/N ratio (50.83) respectively. The quality of bio-char for various applications is discussed along with different quality parameters. The bio-char could be used for the production of activated carbon, in fuel applications, and water purification processes. Average bulk density of whole cotton stalk and shredded cotton stalk was found as 29.90 kg/m3 and 147.02 kg/m3 respectively. Thus density was increased by 3.91 times. The value of pH, EC and CEC of shredded cotton stalk biomass was found as 5.59, 0.03 dS/m and 38.84 cmol/kg respectively. Minimum and maximum values pH, EC and CEC of its bio-char was found as 5.85 to9.86, 0.04 to 0.10 dS/m and 38.02 to 24.39 cmol/kg at 200°C and 60 min and; 500°C and 240 min temperature and residence time respectively. Moisture content, ash content, volatile matter and fixed carbon of shredded cotton stalk biomass were found as, 12.5, 5.27, 80.22, and 14.51 (%, d.b) respectively. The minimum and maximum value of bio-char in terms of ash content, volatile matter and fixed carbon of bio-char were found as 5.5 to 15.56, 48.02 to 79.48 and 15.02 to 36.40 (%, d.b) respectively. Calorific value of cotton stalk biomass was found as 3685.3 cal /g. The minimum and maximum higher heating value of its bio-char was found as 4622.0 cal/ g and 8101.3 cal/g at 200°C and 60 min and; 500˚C and 240 min temperature and residence time.


JTAM ROTARY ◽  
2019 ◽  
Vol 1 (1) ◽  
pp. 39
Author(s):  
Randi Nasarudin ◽  
Abdul Ghofur

The development of alternative energy sources that can replace fuel oil is very important to utilize natural resources optimally and environmentally. The shell produced from rubber plants is the main ingredient in this study, while the coconut shell is an additional material used to increase the calorific value of alternative fuels which is often referred to as Briquette. The purpose of this study is to determine the effect of variations in raw material composition and variations in pressure on the quality of rubber shells and coconut shell waste briquettes according to SNI standards. The raw material for rubber shell and coconut shell is processed into charcoal using carbonization method with a variation of a mixture of 85%: 15%, 90%: 10% and 95%: 5% with 5% adhesive. Then mix the printed material with a pressure of 300 kg/cm2 and 100kg/cm2. The quality parameters of briquettes are based on SNI 01-6235-2000 standards with moisture content, ash content, volatille matter content, and lacquer value. The results of the study showed that the sample b1 with 85% injection: 15% print pressure 300kg/cm2. The briquette with the sample code b1 has a water content value of 5,10432%, ash content of 14,8604%, volatile matter content of 12,8002%, carbon value of 66,8225% and heating value of 6576.592501 cal/gr. But overall the briquettes have not met the standards of SNI 01-6235-2000 concerning the quality of wood charcoal briquettes. Because the ash content of the briquette exceeds the maximum limit that has been determined, namely a maximum of 8%.  Keywords: Alternative Energy, Rubber Seed Shell, Coconut Shell, Pressure


Author(s):  
Vladimirs Kirsanovs ◽  
Lelde Timma ◽  
Aivars Zandeckis ◽  
Francesco Romagnoli

Abstract The objectives of the paper are to determine the quality of pellets available on the market in Latvia and to compare results with the European standard EN 14961-2:2011. The following parameters have been determined for samples of pellets: length, diameter, moisture and ash content, mechanical durability, lower calorific value and bulk density. The results showed that all samples confirm to the B class requirements of the standard. If one considers the A1 class - only 4 out of 9 samples fit the requirements. The paper emphasizes the need for the introduction of a quality control system for the wood pellets market in Latvia.


Sign in / Sign up

Export Citation Format

Share Document