scholarly journals ANTIDIABETIC ACTIVITY OF ENDOPHYTIC FUNGI ISOLATED FROM FICUS RELIGIOSA

Author(s):  
Palak Tiwari ◽  
Nathiya R ◽  
Gayathri Mahalingam

Objective- The aim was to study in vitro anti diabetic activity of endophytic fungi isolated from Ficus Religiosa.Method- The explants (leaves and stem) were processed on the potato dextrose media nine colonies was found and colony frequency was calculated. All the colonies were transferred onto potato dextrose broth and incubated for 21 days. The crude was extracted using three solvents petroleum ether (0.1), diethyl ether (2.8) and ethyl acetate (4.4). Three assays were performed to determine in vitro anti diabetic activity of crude extract (α-amylase inhibition assay, α-glucosidase inhibition assay and glucose diffusion assay) and the % of inhibition by crude and standard acarbose was calculated with standard error mean.Results- The endophytic fungi shows the highest % of inhibition for α-amylase inhibition assay (91 % ± 0.06), α-glucosidase inhibition assay (42% ± 0.01).Conclusion-The results indicates that the hypoglycemic activity of the endophytic crude extract has been proved, hence further studies are focused on to isolate and purify the bioactive compounds and test for in vivo animal studies to confirm the anti diabetic activity.Keywords: Endophytic fungi, Antidiabetic activity, α-amylase, α-glucosidase.

2019 ◽  
Vol 12 (2) ◽  
pp. 603-608
Author(s):  
Anas AlAhmed ◽  
Hany Ezzat Khalil

The main objective of current study was to investigate the in vitro and in vivo antidiabetic activity of Terfezia claveryi methanol extract. In vitro antidiabetic assays such as inhibition of α-amylase enzyme and non-enzymatic glycosylation of hemoglobin were carried out. The results of α- amylase inhibition assay revealed that the inhibitory activity (IC50) of Terfezia claveryi methanol extract (‎38.7µg/ml) is stronger when compared with positive control (Acarbose IC50 value of ‎45.3‎ µg/ml). The inhibition of glycosylation of hemoglobin of Terfezia claveryi methanol extract showed almost the same IC50 (33.1µg/ml) when compared the positive control, alpha-tocopherol (‎35.4µg/ml‎). In vivo antidiabetic study revealed that Terfezia claveryi methanol extract ‎ possessed good activity at a dose of 200 mg/kg through reducing the fasting plasma glucose level (122.1‎±‎3.0 mg/dl) when compared with positive control (Glibenclamide of ‎79.4±1.4‎ mg/dl) (p < 0.001). The results from this study indicated that Terfezia claveryi methanol extract exhibited considerable in vitro and in vivo antidiabetic activities. These possible activities could be useful to consider Terfezia claveryi ‎ as therapeutic antidiabetic candidate.


Author(s):  
Rita Marleta Dewi ◽  
Megawati Megawati ◽  
Lucia Dwi Antika

: Diabetes mellitus is the most common chronic metabolic disorder and is considered one of the leading causes of morbidity and mortality. The improperly-treated chronic hyperglycemia of diabetes has been related to several long-term complications and multiple organ failures, including nephropathy, which can lead to kidney failure, retinopathy with the potential loss of vision, and cardiovascular symptoms. Current commercially available synthetic glucose-lowering agents have been reported to have several adverse effects. Therefore, the search for alternative remedies such as medicinal plants and their active compounds have attracted attention. Chrysin is an active flavonoid that exists widely in various plants and diets and has been reported to possess pharmacological properties, including antidiabetic activity. Many studies have been conducted to characterize the antidiabetic of chrysin, as well as its potential pathways, in in vitro and in vivo experiments. Chrysin has shown promise as an antidiabetic agent in animal studies, thus, demonstrating its potential to be developed as an antidiabetic drug. This review discussed the antidiabetic action of chrysin and its mechanisms, including targeting different mechanisms such as stimulation of insulin signaling, blockage of endoplasmic reticulum stress and oxidative damage, promotion of skeletal glucose uptake, as well as modulation of apoptosis and autophagy signaling. Additionally, this review would be useful for further studies regarding the mechanism of work of plant derived-compound as a potential antidiabetic agent.


2020 ◽  
Vol 48 (3) ◽  
pp. 755-764
Author(s):  
Benjamin B. Rothrauff ◽  
Rocky S. Tuan

Bone possesses an intrinsic regenerative capacity, which can be compromised by aging, disease, trauma, and iatrogenesis (e.g. tumor resection, pharmacological). At present, autografts and allografts are the principal biological treatments available to replace large bone segments, but both entail several limitations that reduce wider use and consistent success. The use of decellularized extracellular matrices (ECM), often derived from xenogeneic sources, has been shown to favorably influence the immune response to injury and promote site-appropriate tissue regeneration. Decellularized bone ECM (dbECM), utilized in several forms — whole organ, particles, hydrogels — has shown promise in both in vitro and in vivo animal studies to promote osteogenic differentiation of stem/progenitor cells and enhance bone regeneration. However, dbECM has yet to be investigated in clinical studies, which are needed to determine the relative efficacy of this emerging biomaterial as compared with established treatments. This mini-review highlights the recent exploration of dbECM as a biomaterial for skeletal tissue engineering and considers modifications on its future use to more consistently promote bone regeneration.


2020 ◽  
Vol 26 ◽  
Author(s):  
Shaik Ibrahim Khalivulla ◽  
Arifullah Mohammed ◽  
Kokkanti Mallikarjuna

Background: Diabetes is a chronic disease affecting a large population worldwide and stands as one of the major global health challenges to be tackled. According to World Health Organization, about 400 million are having diabetes worldwide and it is the seventh leading cause of deaths in 2016. Plant based natural products had been in use from ancient time as ethnomedicine for the treatment of several diseases including diabetes. As a result of that, there are several reports on plant based natural products displaying antidiabetic activity. In the current review, such antidiabetic potential compounds reported from all plant sources along with their chemical structures are collected, presented and discussed. This kind of reports are essential to pool the available information to one source followed by statistical analysis and screening to check the efficacy of all known compounds in a comparative sense. This kind of analysis can give rise to few numbers of potential compounds from hundreds, whom can further be screened through in vitro and in vivo studies, and human trails leading to the drug development. Methods: Phytochemicals along with their potential antidiabetic property were classified according to their basic chemical skeleton. The chemical structures of all the compounds with antidiabetic activities were elucidated in the present review. In addition to this, the distribution and their other remarkable pharmacological activities of each species is also included. Results: The scrutiny of literature led to identification of 44 plants with antidiabetic compounds (70) and other pharmacological activities. For the sake of information, the distribution of each species in the world is given. Many plant derivatives may exert antidiabetic properties by improving or mimicking the insulin production or action. Different classes of compounds including sulfur compounds (1-4), alkaloids (5-11), phenolic compounds (12-17), tannins (18-23), phenylpropanoids (24-27), xanthanoids (28-31), amino acid (32), stilbenoid (33), benzofuran (34), coumarin (35), flavonoids (36-49) and terpenoids (50-70) were found to be active potential compounds for antidiabetic activity. Of the 70 listed compounds, majorly 17 compounds are from triterpenoids, 13 flavonoids and 7 are from alkaloids. Among all the 44 plant species, maximum number (7) of compounds are reported from Lagerstroemia speciosa followed by Momordica charantia (6) and S. oblonga with 5 compounds. Conclusion: This is the first paper to summarize the established chemical structures of phytochemicals that have been successfully screened for antidiabetic potential and their mechanisms of inhibition. The reported compounds could be considered as potential lead molecules for the treatment of type-2 diabetes. Further, molecular and clinical trials are required to select and establish the therapeutic drug candidates.


2020 ◽  
Vol 20 ◽  
Author(s):  
Nur Najmi Mohamad Anuar ◽  
Nurul Iman Natasya Zulkafali ◽  
Azizah Ugusman

: Matrix metalloproteinases (MMPs) are a group of zinc-dependent metallo-endopeptidase that are responsible towards the degradation, repair and remodelling of extracellular matrix components. MMPs play an important role in maintaining a normal physiological function and preventing diseases such as cancer and cardiovascular diseases. Natural products derived from plants have been used as traditional medicine for centuries. Its active compounds, such as catechin, resveratrol and quercetin, are suggested to play an important role as MMPs inhibitors, thereby opening new insights into their applications in many fields, such as pharmaceutical, cosmetic and food industries. This review summarises the current knowledge on plant-derived natural products with MMP-modulating activities. Most of the reviewed plant-derived products exhibit an inhibitory activity on MMPs. Amongst MMPs, MMP-2 and MMP-9 are the most studied. The expression of MMPs is inhibited through respective signalling pathways, such as MAPK, NF-κB and PI3 kinase pathways, which contribute to the reduction in cancer cell behaviours, such as proliferation and migration. Most studies have employed in vitro models, but a limited number of animal studies and clinical trials have been conducted. Even though plant-derived products show promising results in modulating MMPs, more in vivo studies and clinical trials are needed to support their therapeutic applications in the future.


Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 745
Author(s):  
Enrico Bergamaschi ◽  
Giacomo Garzaro ◽  
Georgia Wilson Jones ◽  
Martina Buglisi ◽  
Michele Caniglia ◽  
...  

Carbon nanotubes (CNTs) and carbon nanofibers (CNFs) are erroneously considered as singular material entities. Instead, they should be regarded as a heterogeneous class of materials bearing different properties eliciting peculiar biological outcomes both in vitro and in vivo. Given the pace at which the industrial production of CNTs/CNFs is increasing, it is becoming of utmost importance to acquire comprehensive knowledge regarding their biological activity and their hazardous effects in humans. Animal studies carried out by inhalation showed that some CNTs/CNFs species can cause deleterious effects such as inflammation and lung tissue remodeling. Their physico-chemical properties, biological behavior and biopersistence make them similar to asbestos fibers. Human studies suggest some mild effects in workers handling CNT/CNF. However, owing to their cross-sectional design, researchers have been as yet unable to firmly demonstrate a causal relationship between such an exposure and the observed effects. Estimation of acceptable exposure levels should warrant a proper risk management. The aim of this review is to challenge the conception of CNTs/CNFs as a single, unified material entity and prompt the establishment of standardized hazard and exposure assessment methodologies able to properly feeding risk assessment and management frameworks.


Biomolecules ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 99 ◽  
Author(s):  
Danja J. Den Hartogh ◽  
Evangelia Tsiani

Type 2 diabetes mellitus (T2DM) is a metabolic disease characterized by insulin resistance and hyperglycemia and is associated with personal health and global economic burdens. Current strategies/approaches of insulin resistance and T2DM prevention and treatment are lacking in efficacy resulting in the need for new preventative and targeted therapies. In recent years, epidemiological studies have suggested that diets rich in vegetables and fruits are associated with health benefits including protection against insulin resistance and T2DM. Naringenin, a citrus flavanone, has been reported to have antioxidant, anti-inflammatory, hepatoprotective, nephroprotective, immunomodulatory and antidiabetic properties. The current review summarizes the existing in vitro and in vivo animal studies examining the anti-diabetic effects of naringenin.


Author(s):  
Anja Köhler ◽  
Benjamin Escher ◽  
Laura Job ◽  
Marianne Koller ◽  
Horst Thiermann ◽  
...  

AbstractHighly toxic organophosphorus nerve agents, especially the extremely stable and persistent V-type agents such as VX, still pose a threat to the human population and require effective medical countermeasures. Engineered mutants of the Brevundimonas diminuta phosphotriesterase (BdPTE) exhibit enhanced catalytic activities and have demonstrated detoxification in animal models, however, substrate specificity and fast plasma clearance limit their medical applicability. To allow better assessment of their substrate profiles, we have thoroughly investigated the catalytic efficacies of five BdPTE mutants with 17 different nerve agents using an AChE inhibition assay. In addition, we studied one BdPTE version that was fused with structurally disordered PAS polypeptides to enable delayed plasma clearance and one bispecific BdPTE with broadened substrate spectrum composed of two functionally distinct subunits connected by a PAS linker. Measured kcat/KM values were as high as 6.5 and 1.5 × 108 M−1 min−1 with G- and V-agents, respectively. Furthermore, the stereoselective degradation of VX enantiomers by the PASylated BdPTE-4 and the bispecific BdPTE-7 were investigated by chiral LC–MS/MS, resulting in a several fold faster hydrolysis of the more toxic P(−) VX stereoisomer compared to P(+) VX. In conclusion, the newly developed enzymes BdPTE-4 and BdPTE-7 have shown high catalytic efficacy towards structurally different nerve agents and stereoselectivity towards the toxic P(−) VX enantiomer in vitro and offer promise for use as bioscavengers in vivo.


2011 ◽  
Vol 46 (6) ◽  
pp. 2243-2251 ◽  
Author(s):  
Juan José Ramírez-Espinosa ◽  
Maria Yolanda Rios ◽  
Sugey López-Martínez ◽  
Fabian López-Vallejo ◽  
José L. Medina-Franco ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document