scholarly journals ANTIBIOTIC RESISTANCE, MECA GENE DETECTION, AND BIOFILM FORMATION ABILITY AMONG COAGULASE-NEGATIVE STAPHYLOCOCCI IN CANCER PATIENTS

Author(s):  
DILSHA TK ◽  
SAJANI SAMUEL ◽  
PARTHIBAN RUDRAPATHY ◽  
SARAVANAN MURUGESAN ◽  
SARATH KE

Objective: The objective of the study was to identify coagulase-negative staphylococci (CoNS) from various clinical samples and to determine the antibiotic resistance of the isolates by means of automation (VITEK-2), as well as to detect biofilm formation using Congo red agar method and to detect mecA gene by automated identification method (VITEK-2). Methods: All the clinical samples (blood, urine, sputum, BAL, throat swab, wound swab, aspirated fluid, pleural fluid, and pus) received in the microbiology laboratory were processed by aseptic techniques. Clinical samples were inoculated on appropriate media (blood agar, MacConkey agar, and chocolate agar [HIMEDIA]). After inoculation, the culture plates were incubated at 37°C aerobically for 18–24 h for growth. Positive cultures were picked up and further bacterial species identification was done using automated techniques (MALDI- TOF). Results: Among 28 isolates, the most recurrent strains of CoNS are Staphylococcus epidermidis, Staphylococcus hominis, Staphylococcus lugdunensis, and Staphylococcus haemolyticus. The assessment of antibacterial drugs sensitivity shows that all the isolates were more sensitive to daptomycin (S. epidermidis 100%, S. hominis 100%, S. lugdunensis 100%, and S. haemolyticus 42.85%) followed by linezolid (S. epidermidis [69.23%], S. hominis [100%], S. lugdunensis [100%], and S. haemolyticus [57.14%]) and vancomycin (S. epidermidis [100%], S. hominis [40%], S. lugdunensis [100%], S. haemolyticus [42.85%]). The analysis revealed the presence of the mecA gene (67.85%) and biofilm production (85.71%), respectively. Conclusion: Our data indicate that the hospital environment can be colonized by biofilm forming CoNS and transmission of these strains can cause an increased risk of serious nosocomial infections.

Author(s):  
Somaye Delfani ◽  
Faranak Rezaei ◽  
Setareh Soroush ◽  
Pegah Shakib

Background: Methicillin-resistant coagulase-negative staphylococci is responsible for hospital and community-acquired infections. Objective: This study aimed to investigate the antibiotic-resistance patterns, antibiotic-resistance genes, namely, ermA, ermB, ermC, blaZ, msrA, tetK, tetM, mup, and vanA, biofilm formation, and prevalence of different SCCmec types among the Staphylococcus cohniistrains isolated from clinical samples in Tehran, Iran. Methods: In this study,S. cohniiisolates were screened from the clinical samples from March 2012 to February 2013 in Tehran, Iran.Antimicrobial susceptibility test and inducible clindamycin resistance were evaluated by disc diffusion method, andresistance genes were examined using Polymerase Chain Reaction (PCR) assays. Then, biofilm formation assay was analyzed by Microtiter-plate test to detect the icaA and icaDgenes. The SCCmec and the Arginine Catabolite Mobile Element (ACME) typing were performed using the PCRmethod. Results: FromtwentyS. cohnii, all isolates were resistant to cefoxitin. 95% of the S. cohnii was defined as multidrug resistance (MDR)strains. The ermB, ermC, and vanA genes were not detected in any isolates; however, the blaZ gene had the highest frequency.95% of the S. cohnii isolates produced biofilm. Also, 4 SCCmec types, including V, IV, III+ (C2), VIII+ (AB1), were identified. Therefore, the majority of SCCmec were untypable. Based on the ACME typing, arcA and opp3 genes were positive in 13 (65%) and 1 (5%) isolates, respectively. Conclusion: Due to the high antimicrobial resistance and the spread of untypableSCCmecamong the isolates studied, the control and treatment of methicillin-resistantS. cohnii in hospitals and public health centers is a significant concern.


Author(s):  
Luma Abdal Hady Zwein ◽  
Tharieyt Abdulrahman Motlag ◽  
Mohamed Mousa

      The study included 200 samples were collected   from   children  under two   years included (50 samples from each of Cerebrospinal fluid, Blood, Stool and Urine) from, Central Children Hospital and Children's Protections Educational Hospital. Isolates bacterial were obtained cultural, microscopic and biochemical examination and diagnosed to the species by using vitek2 system. The results showed there were contamination in 6.5% of clinical samples. The diagnosed colonies which gave pink color on the MacConkey agar , golden yellow color on the Trypton Soy agar and green color on the Birillent Enterobacter sakazakii agar and gave  a probability of 99% in the vitek 2 and were identified as Cronobacter sakazakii. The identification revealed of thirteen isolates: 6(46.16%) isolated from Cerebrospinal fluid samples, 7(53.84%) isolated from blood samples and not isolated bacteria from stool and urine samples. The results of the investigation of some virulence factors showed that all bacteria isolates were able to swimming with a diameter ranging (1-9 mm) and swarming with a diameter ranging (1-40 mm) and their  ability to biofilm formation  by using three methods. The results show the ability  of  isolates to form biofilm by using  Congo red media  methods where it is 12 (92.30 %) out of 13 isolated bacteria belonging to C. sakazakii  able to form biofilm on the Congo red media  which is 3 (23.07%) were  strong production  biofilm ,   8 (61.53%)  were intermediate  production  biofilm and  1 (7.69% ) were weak  biofilm formation , while the 1 (7.69%)  unable to form biofilm.  Tubes method were all isolates were able to form biofilm, it were found that 3 (23.07%)  isolates strong, and 8 (61.53%) intermediate  and 2( 15.38%)  weak biofilm formation. Microtiter plate method  gave 5 (38.46 %) isolates strong, 6 (46.15%) intermediate and 1 (7.69%) weak biofilm formation.  


2021 ◽  
Vol 14 (5) ◽  
pp. 420
Author(s):  
Tanveer Ali ◽  
Abdul Basit ◽  
Asad Mustafa Karim ◽  
Jung-Hun Lee ◽  
Jeong-Ho Jeon ◽  
...  

β-Lactam antibiotics target penicillin-binding proteins and inhibit the synthesis of peptidoglycan, a crucial step in cell wall biosynthesis. Staphylococcus aureus acquires resistance against β-lactam antibiotics by producing a penicillin-binding protein 2a (PBP2a), encoded by the mecA gene. PBP2a participates in peptidoglycan biosynthesis and exhibits a poor affinity towards β-lactam antibiotics. The current study was performed to determine the diversity and the role of missense mutations of PBP2a in the antibiotic resistance mechanism. The methicillin-resistant Staphylococcus aureus (MRSA) isolates from clinical samples were identified using phenotypic and genotypic techniques. The highest frequency (60%, 18 out of 30) of MRSA was observed in wound specimens. Sequence variation analysis of the mecA gene showed four amino acid substitutions (i.e., E239K, E239R, G246E, and E447K). The E239R mutation was found to be novel. The protein-ligand docking results showed that the E239R mutation in the allosteric site of PBP2a induces conformational changes in the active site and, thus, hinders its interaction with cefoxitin. Therefore, the present report indicates that mutation in the allosteric site of PBP2a provides a more closed active site conformation than wide-type PBP2a and then causes the high-level resistance to cefoxitin.


Pathogens ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 170
Author(s):  
Angela França ◽  
Vânia Gaio ◽  
Nathalie Lopes ◽  
Luís D. R. Melo

Coagulase-negative staphylococci (CoNS) have emerged as major pathogens in healthcare-associated facilities, being S. epidermidis, S. haemolyticus and, more recently, S. lugdunensis, the most clinically relevant species. Despite being less virulent than the well-studied pathogen S. aureus, the number of CoNS strains sequenced is constantly increasing and, with that, the number of virulence factors identified in those strains. In this regard, biofilm formation is considered the most important. Besides virulence factors, the presence of several antibiotic-resistance genes identified in CoNS is worrisome and makes treatment very challenging. In this review, we analyzed the different aspects involved in CoNS virulence and their impact on health and food.


2021 ◽  
Vol 66 (1) ◽  
pp. 42-44
Author(s):  
N. A. Gordinskaya ◽  
E. V. Boriskina ◽  
D. V. Kryazhev

1235 strains of Staphylococci isolated in a multidisciplinary children’s clinic were analyzed. The species and antibiotic resistance of Golden and coagulase-negative Staphylococci were studied. The most frequently identified species were: S. aureus-36.06%, S. epidermidis-23.05%, S. haemolyticus-19.7%, S. hominis-14.03%. Phenotype methicillinsensitive strains had 48.9% of the allocated staphylococci, while metitillinrezistentnykh S. aureus was identified in 25.6%, and coagulase-negative staphylococci methicillinresistant- 63.2 per cent. The frequency of associated resistance to aminoglycosides, fluoroquinolones, macrolides and tetracyclines have metitillinresictant strains 92,7%, 78,3%, 83,4% and 52,05% respectively, resistant Staphylococcus and coagulase-negative staphylococci were similar. The minimum number of resistant strains was found in relation to daptomycin, no strains resistant to vancomycin and linezolid were found. Antibiotic resistance of staphylococci in children’s hospitals is determined by the presence of the mecA gene or sensitivity to cefoxitin and does not depend on the type of strain.


Author(s):  
Gholamreza Goudarzi ◽  
Yaser Hasanvand ◽  
Faranak Rezaei ◽  
Somayeh Delfani

Background and Objectives: Recently, the rise of methicillin-resistant Staphylococcus aureus (MRSA) isolated from hos- pital healthcare workers (HCWs) and various infectious samples has become one of the main concerns in hospital settings. Therefore, epidemiological studies are necessary to monitor antibiotic resistance patterns in each region and to study the pathogenesis of this strain to control infections. Materials and Methods: In this cross-sectional study, a total of 100 S. aureus isolates, including 50 isolates obtained from the anterior nares of healthcare workers, as well as 50 other isolates cultured from the various clinical specimens from the referral hospitals in Khorramabad (West of Iran) were tested. All isolates were examined to determine antibiotic resistance pattern, and the presence of staphylococcal enterotoxin A (sea), staphylococcal enterotoxin B (seb) and mecA genes. Results: The mecA gene was found among 36% (18/50) of the clinical S. aureus isolates (CSIs) and 14% (7/50) of nasal S. aureus isolates (NSIs), with statistically significant difference (X2 = 6.53; p = 0.011). The difference between the frequency rate of sea gene among MRSA strains isolated from clinical specimens (46.6%, 7/15) was significant compared to strains isolated from nostrils (14.3%, 1/7) (X2 = 3.85; p = 0.049). Conclusion: The frequency of mecA, sea, and seb genes among the clinical samples was more than strains isolated from the nostrils of healthcare personnel.


2017 ◽  
Vol 199 (18) ◽  
Author(s):  
Reed M. Stubbendieck ◽  
Paul D. Straight

ABSTRACT Bacteria use two-component signaling systems to adapt and respond to their competitors and changing environments. For instance, competitor bacteria may produce antibiotics and other bioactive metabolites and sequester nutrients. To survive, some species of bacteria escape competition through antibiotic production, biofilm formation, or motility. Specialized metabolite production and biofilm formation are relatively well understood for bacterial species in isolation. How bacteria control these functions when competitors are present is not well studied. To address fundamental questions relating to the competitive mechanisms of different species, we have developed a model system using two species of soil bacteria, Bacillus subtilis and Streptomyces sp. strain Mg1. Using this model, we previously found that linearmycins produced by Streptomyces sp. strain Mg1 cause lysis of B. subtilis cells and degradation of colony matrix. We identified strains of B. subtilis with mutations in the two-component signaling system yfiJK operon that confer dual phenotypes of specific linearmycin resistance and biofilm morphology. We determined that expression of the ATP-binding cassette (ABC) transporter yfiLMN operon, particularly yfiM and yfiN, is necessary for biofilm morphology. Using transposon mutagenesis, we identified genes that are required for YfiLMN-mediated biofilm morphology, including several chaperones. Using transcriptional fusions, we found that YfiJ signaling is activated by linearmycins and other polyene metabolites. Finally, using a truncated YfiJ, we show that YfiJ requires its transmembrane domain to activate downstream signaling. Taken together, these results suggest coordinated dual antibiotic resistance and biofilm morphology by a single multifunctional ABC transporter promotes competitive fitness of B. subtilis. IMPORTANCE DNA sequencing approaches have revealed hitherto unexplored diversity of bacterial species in a wide variety of environments that includes the gastrointestinal tract of animals and the rhizosphere of plants. Interactions between different species in bacterial communities have impacts on our health and industry. However, many approaches currently used to study whole bacterial communities do not resolve mechanistic details of interspecies interactions, including how bacteria sense and respond to their competitors. Using a competition model, we have uncovered dual functions for a previously uncharacterized two-component signaling system involved in specific antibiotic resistance and biofilm morphology. Insights gleaned from signaling within interspecies interaction models build a more complete understanding of gene functions important for bacterial communities and will enhance community-level analytical approaches.


2019 ◽  
Author(s):  
Mona Nasaj ◽  
Zahra Saeidi ◽  
Babak Asghari ◽  
Ghodratollah Roshanaei ◽  
Mohammad Arabestani

Abstract Objection : Coagulase-negative staphylococci (CoNS) are considered opportunistic pathogens which capable of producing several toxins, enzymes and also resistance genes. The current study aimed to determine the occurrence of different hemolysins and patterns of antibiotic resistance among CoNS species. Results : The highest frequency of antibiotic resistance was observed against cefoxitin in 49 isolates (53.8%), and the lowest resistance was against novobiocin in 5 isolates (5.5%). None of the isolates were resistant to vancomycin. The prevalence of hla, hla_yidD, hld, and hlb genes were determined as 87.9%, 62.6%, 56%, and 47.3%, respectively. The hla/yidD and hld genes were detected in 69.4% of S. epidermidis and the hla gene in 94.6% of S. haemolyticus ; hlb gene was detected in 53.1% of the S. epidermidis isolates. mecA gene was identified in 50 (55%) of the CoNS isolates. In conclusion, the results of statistical analysis showed that the hld gene had a significant association with resistance to levofloxacin and erythromycin and the hlb with clindamycin resistance. The results of this study showed that there is a significant relationship between hemolysin encoding genes and antibiotic resistance patterns; therefore, detection of virulence factors associated with antibiotic resistance has become a significant issue of concern.


Sign in / Sign up

Export Citation Format

Share Document