scholarly journals SOME MULTIFUNCTIONAL LIPID EXCIPIENTS AND THEIR PHARMACEUTICAL APPLICATIONS

Author(s):  
RAJNI DEVI ◽  
SHWETA AGARWAL

This review is generally focussed on lipid-based excipients in solid oral formulations which increase its bioavailability. Several approaches have been used to deliver the drug efficiently in the body, and lipid excipients are one of the promising drug delivery systems which address challenges like solubility and bioavailability of water-soluble drugs. Lipids excipients can be tailored to meet a wide range of product requirements like disease indication, route of administration, stability, toxicity, and efficacy. This review discusses novel lipids like Compritol 888 ATO, Dynasan 114, and Precirol ATO 5 and how these can be employed for devicing efficient drug delivery models and thereby have used in cosmetic and pharmaceutical industries.

2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Hina Shrestha ◽  
Rajni Bala ◽  
Sandeep Arora

The principle objective of formulation of lipid-based drugs is to enhance their bioavailability. The use of lipids in drug delivery is no more a new trend now but is still the promising concept. Lipid-based drug delivery systems (LBDDS) are one of the emerging technologies designed to address challenges like the solubility and bioavailability of poorly water-soluble drugs. Lipid-based formulations can be tailored to meet a wide range of product requirements dictated by disease indication, route of administration, cost consideration, product stability, toxicity, and efficacy. These formulations are also a commercially viable strategy to formulate pharmaceuticals, for topical, oral, pulmonary, or parenteral delivery. In addition, lipid-based formulations have been shown to reduce the toxicity of various drugs by changing the biodistribution of the drug away from sensitive organs. However, the number of applications for lipid-based formulations has expanded as the nature and type of active drugs under investigation have become more varied. This paper mainly focuses on novel lipid-based formulations, namely, emulsions, vesicular systems, and lipid particulate systems and their subcategories as well as on their prominent applications in pharmaceutical drug delivery.


Author(s):  
Hindustan Abdul Ahad ◽  
Haranath Chintaginjala ◽  
Syed Rahamathulla ◽  
Aswarthanarayana Rupasree ◽  
Anegondithimmappa Sajan Kumar ◽  
...  

For a long time, drug delivery systems (DDS) have been targeted to get expected results. With nanotechnology-based DDS, a wide assortment of flawless challenges can be tackled at present. Known as a nanosponge, a nanosponge is a modern division of material consisting of tiny particles that transmit only a few nanometers. The nano-formulations are highly effective for the delivery of low-solubility drugs. Many drugs with narrow therapeutic windows can benefit from improving water solubility. It has even been claimed they can be utilized to target and control delivery. In addition, huge amounts of money have been spent on developing new formulations of the DDS in recent times. Learn how nanosponges are prepared, its advantages, and its disadvantages. Resources were consulted to comprehend recent enhancements and patents in the domain. The ideal DDS has been developed by combining many different formulations; nano sponges are one of them. Analysts have examined them and found that they produce positive results and can improve the stability of poorly water-soluble drugs. The drug will be released at the precise target site when it reaches the body and sticks to the surface of the target site. As medication maximum action declines, it is more difficult to formulate impotent drugs. Considering this, nanosponges are organized and examined to determine whether they are problematic. Nanosponges in drug delivery can be characterized by their characteristics, preparation, factors, and applications. The article was written based on research articles about nanosponges. Data on nanosponges drug delivery systems from the past decade was collected using a factorial design. Study authors report that factor design plays an imperative role in optimizing drug dosage forms. Researchers will save time by reviewing the literature on nanosponges via factorial designs instead of searching for it.


2021 ◽  
Vol 001 (01) ◽  
Author(s):  
Mamta Nasit ◽  
Meshva Patel ◽  
Ajay Solanki ◽  
Jayendrakumar Patel

In recent time, about 70% of new molecules discovered or under discovery are lipophilic in nature with low aqueous solubility which makes a great challenge for formulation scientists to making these molecules to be have a sufficient aqueous solubility and oral bioavailability. Lipid-based drug delivery system (LBDDS- wide ranging designation for formulations containing a dissolved or suspended drug in lipid excipients) is one of the appropriate approach which gained significant popularity due to their ability to deliver poorly water-soluble drugs with improved solubility and oral bioavailability. Conventional LBDDS, including lipid emulsions, suspensions etc. suffer from various drawbacks limiting their widespread commercialization and use. Therefore, solid-state LBDDS fabricated from conventional LBDDS using different types of solid carriers via various solidification methods eliminated some of the various limitations of conventional LBDDS with great stability. The present review provide overview on the various types of solid state lipid based drug delivery systems, different types of solid carriers use in formulation of solid state lipid based drug delivery system, various solidification techniques for conversion of liquid lipid system to solid dosage form, advantages and some practical limitations of lipid based drug delivery system.


2021 ◽  
Vol 2 (1) ◽  
pp. 63-81
Author(s):  
Sajana Manandhar ◽  
Erica Sjöholm ◽  
Johan Bobacka ◽  
Jessica M. Rosenholm ◽  
Kuldeep K. Bansal

Since the last decade, the polymer-drug conjugate (PDC) approach has emerged as one of the most promising drug-delivery technologies owing to several benefits like circumventing premature drug release, offering controlled and targeted drug delivery, improving the stability, safety, and kinetics of conjugated drugs, and so forth. In recent years, PDC technology has advanced with the objective to further enhance the treatment outcomes by integrating nanotechnology and multifunctional characteristics into these systems. One such development is the ability of PDCs to act as theranostic agents, permitting simultaneous diagnosis and treatment options. Theranostic nanocarriers offer the opportunity to track the distribution of PDCs within the body and help to localize the diseased site. This characteristic is of particular interest, especially among those therapeutic approaches where external stimuli are supposed to be applied for abrupt drug release at the target site for localized delivery to avoid systemic side effects (e.g., Visudyne®). Thus, with the help of this review article, we are presenting the most recent updates in the domain of PDCs as nanotheranostic agents. Different methodologies utilized to design PDCs along with imaging characteristics and their applicability in a wide range of diseases, have been summarized in this article.


2003 ◽  
Vol 51 (1) ◽  
pp. 15-19 ◽  
Author(s):  
Masako Kajihara ◽  
Toshihiko Sugie ◽  
Hiroo Maeda ◽  
Akihiko Sano ◽  
Keiji Fujioka ◽  
...  

2013 ◽  
Vol 2013 ◽  
pp. 1-15 ◽  
Author(s):  
Wei Xu ◽  
Peixue Ling ◽  
Tianmin Zhang

Oral administration is the most commonly used and readily accepted form of drug delivery; however, it is find that many drugs are difficult to attain enough bioavailability when administered via this route. Polymeric micelles (PMs) can overcome some limitations of the oral delivery acting as carriers able to enhance drug absorption, by providing (1) protection of the loaded drug from the harsh environment of the GI tract, (2) release of the drug in a controlled manner at target sites, (3) prolongation of the residence time in the gut by mucoadhesion, and (4) inhibition of efflux pumps to improve the drug accumulation. To explain the mechanisms for enhancement of oral bioavailability, we discussed the special stability of PMs, the controlled release properties of pH-sensitive PMs, the prolongation of residence time with mucoadhesive PMs, and the P-gp inhibitors commonly used in PMs, respectively. The primary purpose of this paper is to illustrate the potential of PMs for delivery of poorly water-soluble drugs with bioavailability being well maintained.


Author(s):  
Navneet Sharma ◽  
Sabna Kotta ◽  
Mohd Aleem ◽  
Shubham Singh ◽  
Rakesh Kumar Sharma

In the last decade, there has been a mounting concern in lipid-based formulations to deliver water-soluble drugs. Lipid-based drug delivery systems are one of the budding and promising technologies designed to tackle the poor bioavailability problems. This chapter stresses the different mechanisms of lipophilic drug absorption along with its advantages and limitations. It points out the different mechanisms of how lipid-based excipients and the different formulations interact with the absorption process. This review provides a comprehensive summary about the lipid formulation classification scheme (LFCS), a guide for the selection of appropriate formulation and commonly used excipients for lipid-based formulations, along with the important factors to be considered in formulation design and excipient selection. This review also focuses on the formulation of solid lipid-based formulations, important evaluation aspects, and commercial formulations available for the purpose.


Pharmaceutics ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 325 ◽  
Author(s):  
Tran ◽  
Tran

Nanoconjugations have been demonstrated to be a dominant strategy for drug delivery and biomedical applications. In this review, we intend to describe several strategies for drug formulation, especially to improve the bioavailability of poorly water-soluble molecules for future application in the therapy of numerous diseases. The context of current studies will give readers an overview of the conjugation strategies for fabricating nanoparticles, which have expanded from conjugated materials to the surface conjugation of nanovehicles. Moreover, nanoconjugates for theranostics are also discussed and highlighted. Overall, these state-of-the-art conjugation methods and these techniques and applications for nanoparticulate systems of poorly water-soluble drugs will inspire scientists to explore and discover more productive techniques and methodologies for drug development.


2012 ◽  
Vol 4 (2) ◽  
pp. 42-47
Author(s):  
Irwin Dewan ◽  
SM Ashraful Islam ◽  
Mohammad Shahriar

The main objective of the current study was to formulate poorly water soluble drug Spirinolactone by using solid dispersion technique in order to achieve a better dissolution rate which would further help in enhancing oral bioavailability. Solid dispersions were prepared using two methods; solvent method and fusion method. Solid dispersion was prepared by using polymers, such as Hydroxy propylymethyl cellulose (HPMC 6cp), Hydroxy propyl cellulose (HPC), Sodium carboxymethylcellulose (Na-CMC), Povidone K12, Povidone K30, Poloxamer 407. Solid dispersions containing Spironolactone with HPC (96.81%), HPMC 6cp (93.05%), Poloxamer 407 (90.84%) and Na-CMC (89.93%) provided higher release rate than the release rate of solid dispersion containing only Spironolactone (35.27%), and Spironolactone with Povidone K12 (76.17%), Povidone K30 (67.92%). So the present study revealed that the solid dispersion may be an ideal means of drug delivery system for poorly water soluble drugs. Further study in this field was required to establish these drug delivery systems so that in future it can be used effectively in commercial basis.DOI: http://dx.doi.org/10.3329/sjps.v4i2.7776S. J. Pharm. Sci. 4(2) 2011: 42-47


Sign in / Sign up

Export Citation Format

Share Document