Critical role of ADAM15 in tumor progression: targeting multiple factors for metastasis promotion

2008 ◽  
Vol 4 (3) ◽  
pp. 351-354 ◽  
Author(s):  
Aya Kobayashi ◽  
Kounosuke Watabe
2020 ◽  
Author(s):  
Kirti Snigdha ◽  
Amit Singh ◽  
Madhuri Kango-Singh

AbstractPresence of inflammatory factors in the tumor microenvironment is well known yet their specific role in tumorigenesis is elusive. The core inflammatory pathways are conserved in Drosophila, including the Toll-Like Receptor (TLR) and the Tumor Necrosis Factor (TNF) pathway. We used Drosophila tumor models to study the role of inflammatory factors in tumorigenesis. Specifically, we co-activated oncogenic forms of RasV12 or its major effector Yorkie (Yki3SA) in polarity deficient cells mutant for tumor suppressor gene scribble (scrib) marked by GFP under nubGAL4 or in somatic clones. This system recapitulates the clonal origins of cancer, and shows neoplastic growth, invasion and lethality. We investigated if TLR and TNF pathway affect growth of Yki3SAscribRNAi or RasV12scribRNAi tumors through activation of tumor promoting Jun N-terminal Kinase (JNK) pathway and its target Matrix Metalloprotease1 (MMP1). We report, TLR component, Cactus (Cact) is highly upregulated in Yki3SAscribRNAi or RasV12scribRNAi tumors. Drosophila Cactus (mammalian IKBα) acts as an inhibitor of NFKB signaling that plays key roles in inflammatory and immune response. Here we show an alternative role for Cactus, and by extension cytokine mediated signaling, in tumorigenesis. Downregulating Cact affects both tumor progression and invasion. Interestingly, downregulating TNF receptors in tumor cells did not affect their invasiveness despite reducing JNK activity. Genetic analysis suggested that Cact and JNK are key regulators of tumor progression. Overall, we show that Yki plays a critical role in tumorigenesis by controlling Cact, which in turn, mediates tumor promoting JNK oncogenic signaling in tumor cells.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Chiara Ciardiello ◽  
Alessandra Leone ◽  
Alfredo Budillon

Several evidences nowadays demonstrated the critical role of the microenvironment in regulating cancer stem cells and their involvement in tumor progression. Extracellular vesicles (EVs) are considered as one of the most effective vehicles of information among cells. Accordingly, a number of studies led to the recognition of stem cell-associated EVs as new complexes able to contribute to cell fate determination of either normal or tumor cells. In this review, we aim to highlight an existing bidirectional role of EV-mediated communication—from cancer stem cells to microenvironment and also from microenvironment to cancer stem cells—in the most widespread solid cancers as prostate, breast, lung, and colon tumors.


2020 ◽  
Vol 21 (17) ◽  
pp. 6014 ◽  
Author(s):  
Luca Frattaruolo ◽  
Matteo Brindisi ◽  
Rosita Curcio ◽  
Federica Marra ◽  
Vincenza Dolce ◽  
...  

Metabolic reprogramming is a hallmark of cancer, which implements a profound metabolic rewiring in order to support a high proliferation rate and to ensure cell survival in its complex microenvironment. Although initial studies considered glycolysis as a crucial metabolic pathway in tumor metabolism reprogramming (i.e., the Warburg effect), recently, the critical role of mitochondria in oncogenesis, tumor progression, and neoplastic dissemination has emerged. In this report, we examined the main mitochondrial metabolic pathways that are altered in cancer, which play key roles in the different stages of tumor progression. Furthermore, we reviewed the function of important molecules inhibiting the main mitochondrial metabolic processes, which have been proven to be promising anticancer candidates in recent years. In particular, inhibitors of oxidative phosphorylation (OXPHOS), heme flux, the tricarboxylic acid cycle (TCA), glutaminolysis, mitochondrial dynamics, and biogenesis are discussed. The examined mitochondrial metabolic network inhibitors have produced interesting results in both preclinical and clinical studies, advancing cancer research and emphasizing that mitochondrial targeting may represent an effective anticancer strategy.


Tumor Biology ◽  
2020 ◽  
Vol 42 (5) ◽  
pp. 101042832091805 ◽  
Author(s):  
Danielle Barbosa Brotto ◽  
Ádamo Davi Diógenes Siena ◽  
Isabela Ichihara de Barros ◽  
Simone da Costa e Silva Carvalho ◽  
Bruna Rodrigues Muys ◽  
...  

Homeobox genes function as master regulatory transcription factors during development, and their expression is often altered in cancer. The HOX gene family was initially studied intensively to understand how the expression of each gene was involved in forming axial patterns and shaping the body plan during embryogenesis. More recent investigations have discovered that HOX genes can also play an important role in cancer. The literature has shown that the expression of HOX genes may be increased or decreased in different tumors and that these alterations may differ depending on the specific HOX gene involved and the type of cancer being investigated. New studies are also emerging, showing the critical role of some members of the HOX gene family in tumor progression and variation in clinical response. However, there has been limited systematic evaluation of the various contributions of each member of the HOX gene family in the pathways that drive the common phenotypic changes (or “hallmarks”) and that underlie the transformation of normal cells to cancer cells. In this review, we investigate the context of the engagement of HOX gene targets and their downstream pathways in the acquisition of competence of tumor cells to undergo malignant transformation and tumor progression. We also summarize published findings on the involvement of HOX genes in carcinogenesis and use bioinformatics methods to examine how their downstream targets and pathways are involved in each hallmark of the cancer phenotype.


Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3352
Author(s):  
Kwai-Fong Ng ◽  
Tse-Ching Chen ◽  
Martin Stacey ◽  
Hsi-Hsien Lin

Cellular communication plays a critical role in diverse aspects of tumorigenesis including tumor cell growth/death, adhesion/detachment, migration/invasion, angiogenesis, and metastasis. G protein-coupled receptors (GPCRs) which constitute the largest group of cell surface receptors are known to play fundamental roles in all these processes. When considering the importance of GPCRs in tumorigenesis, the adhesion GPCRs (aGPCRs) are unique due to their hybrid structural organization of a long extracellular cell-adhesive domain and a seven-transmembrane signaling domain. Indeed, aGPCRs have been increasingly shown to be associated with tumor development by participating in tumor cell interaction and signaling. ADGRG1/GPR56, a representative tumor-associated aGPCR, is recognized as a potential biomarker/prognostic factor of specific cancer types with both tumor-suppressive and tumor-promoting functions. We summarize herein the latest findings of the role of ADGRG1/GPR56 in tumor progression.


2008 ◽  
Vol 15 (2) ◽  
pp. 50-59 ◽  
Author(s):  
Amy Philofsky

AbstractRecent prevalence estimates for autism have been alarming as a function of the notable increase. Speech-language pathologists play a critical role in screening, assessment and intervention for children with autism. This article reviews signs that may be indicative of autism at different stages of language development, and discusses the importance of several psychometric properties—sensitivity and specificity—in utilizing screening measures for children with autism. Critical components of assessment for children with autism are reviewed. This article concludes with examples of intervention targets for children with ASD at various levels of language development.


1998 ◽  
Vol 5 (1) ◽  
pp. 115A-115A
Author(s):  
K CHWALISZ ◽  
E WINTERHAGER ◽  
T THIENEL ◽  
R GARFIELD
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document