Exosomal miR-196a-1 promotes gastric cancer cell invasion and metastasis by targeting SFRP1

Nanomedicine ◽  
2019 ◽  
Vol 14 (19) ◽  
pp. 2579-2593 ◽  
Author(s):  
Chun Feng ◽  
Junjun She ◽  
Xiaobing Chen ◽  
Qunchao Zhang ◽  
Xu Zhang ◽  
...  

Aim: To investigate the role of exosomal miRNAs on gastric cancer (GC) metastasis. Materials & methods: miRNA expression profiles of exosomes with distinct invasion potentials were analyzed using miRNA microarray and validated by quantitative real-time PCR. In vitro and in vivo experiments assessed the role of exosomal miR-196a-1 in GC's metastasis. Results: High expression level of exosomal miR-196a-1 expression was significantly associated with poor survival in GC. Exosomes that contained miR-196a-1 were secreted from high-invasive GC cells. Ectopic miR-196a-1 expression promoted invasion of low-invasive GC cells by targeting SFRP1. Conclusion: miR-196a-1 was delivered from high-invasive GC into low-invasive GC cells via exosomes and promoted metastasis to the liver in vitro and in vivo.

2020 ◽  
Author(s):  
Hao Lin ◽  
Caihua Zhang ◽  
Liang Zhang ◽  
pengpeng liu

Abstract Background Chemoresistance has become a major obstacle for gastric cancer (GC) therapy in clinical practice. MiRNAs have been reported to play critical roles in the development of chemoresistance in various tumors, including GC. However, the role of MiR-500a-3p within exosomes in cisplatin-resistant GC cells remains largely unknown. Materials and methods Cell proliferation and exosome delivery assays were performed using CCK-8 and transwell assays, respectively. CD63, CD81, β-tubulin, FBXW7, GAPDH, CD133, CD44 and SOX2 were detected by western blot and immunofluorescence assays. The expression levels of miR-500a-3p and FBXW7 mRNA were measured by real-time qRT-PCR. The interaction between miR-500a-3p and FBXW7 was predicted by bioinformatics software and confirmed by the dual-luciferase reporter. The mechanism of exosomal miR-500a-3p for cisplatin resistance was investigated in vitro and in vivo experiments. Results MiR-500a-3p level was upregulated in cisplatin-resistant GC cells and its downregulation enhanced cisplatin sensitivity. Moreover, extracellular miR-500a-3p could be incorporated into exosomes and transmitted to sensitive cells, thus disseminating cisplatin resistance. Additionally, exosomal miR-500a-3p promoted cisplatin resistance via targeting FBXW7 in vitro and in vivo . Clinically, higher expression of miR-500a-3p in the plasma exosomes of GC patients is correlated with DDP resistance and thereby results in poor progression-free prognosis. Conclusion Our finding highlights the potential of exosomal miR-500a-3p as an alternative modality for the prediction and treatment of GC with chemoresistance, providing a novel avenue for the treatment of GC.


2021 ◽  
Vol 27 ◽  
Author(s):  
Bing Sun ◽  
Cuimei Zhao ◽  
Yu Mao

Background: Myocardial fibrosis after myocardial infarction (MI) has been considered a core factor in the deterioration of cardiac function. Previous studies have shown that miRNA plays an important role in various pathophysiological processes of the heart. However, the role of miRNA in myocardial fibrosis regulation after MI remains unclear. In the present study, we documented that miR-218-5p was significantly decreased in myocardial fibroblasts after MI. Methods: The miRNA expression profiles of MI were downloaded from GEO Datasets. The expression of a fibrosis-related gene in vivo and in vitro was analyzed by RT-PCR, western blotting, and immunohistochemical staining. Result: Total 7 up- and 9 downregulated common miRNAs were found in the two profiles. Among these common genes, miR-218-5p was downregulated in the MI mice. MiR-218-5p mediated the myocardial fibrosis in vivo and in vitro. Mechanistically, we found that GJA1 (CX43) may be the target of miR218-5p, and overexpressed CX43 can partly block the function of miR-218-5p in fibrosis inhibition. Conclusion: Our results suggested that miR-218-5p plays an important role in myocardial fibrosis after MI by targeting CX43. Thus, miR-218-5p promises to be a potential diagnosis and treatment of myocardial fibrosis after MI.


2021 ◽  
Author(s):  
Yajun Luo ◽  
Wanping Xiang ◽  
Zilin Liu ◽  
Lin Yao ◽  
Linghan Tang ◽  
...  

Abstract Background: Resistance to platinum-based chemotherapy is a major obstacle in gastric cancer (GC) treatment. Abundant long noncoding RNAs (lncRNAs) are reported to play important roles in tumorigenesis and drug resistance biology. We aimed to investigate the roles and mechanisms of SLC7A11-AS1 in GC cisplatin resistance.Methods: Quantitative real-time PCR (qRT-PCR), RNA fluorescence in situ hybridization (RNA-FISH), immunofluorescence staining and immunohistochemistry were performed on GC tissues or cells to assess expression of SLC7A11-AS1/xCT axis. Cell migration, invasion and apoptosis ability were evaluated by wound healing, transwell and flow cytometry assays. The functional roles of SLC7A11-AS1/xCT axis in GC cisplatin resistance were demonstrated by a series of in-vitro and in-vivo experiments.Results: We report that the SLC7A11-AS1 and xCT are involved in cisplatin resistance in GC. SLC7A11-AS1 was downregulated and xCT was upregulated in cisplatin-resistant GC tissues and cell lines. GC patients with low expression of SLC7A11-AS1 and high expression of xCT had a poor prognosis and relatively poor response to chemotherapy. Overexpression of SLC7A11-AS1 weakened GC growth, reduced intracellular GSH biosynthesis, enhanced intracellular reactive oxygen species (ROS) and conferred sensitivity to cisplatin to resistant GC cells in vitro and in vivo. Mechanistically, SLC7A11-AS1 directly suppressed xCT expression, while miR-33a-5p remarkably reduced SLC7A11-AS1 and xCT expression by directly targeting the SLC7A11-AS1 and xCT 3’UTRs. In addition, we found that low SLC7A11-AS1 expression activated the p38MAPK-JNK signaling pathway, and increased the expression of cisplatin export gene ATP7A and the GSH biosynthesis gene GCLM in GC. Conclusions: These findings suggest that the SLC7A11-AS1/xCT axis is a crucial therapeutic target to overcome platinum-related resistance for GC treatment.


2021 ◽  
Vol 9 (2) ◽  
pp. e001364
Author(s):  
Yan Zhang ◽  
Hui Yang ◽  
Jun Zhao ◽  
Ping Wan ◽  
Ye Hu ◽  
...  

BackgroundThe activation of tumor-associated macrophages (TAMs) facilitates the progression of gastric cancer (GC). Cell metabolism reprogramming has been shown to play a vital role in the polarization of TAMs. However, the role of methionine metabolism in function of TAMs remains to be explored.MethodsMonocytes/macrophages were isolated from peripheral blood, tumor tissues or normal tissues from healthy donors or patients with GC. The role of methionine metabolism in the activation of TAMs was evaluated with both in vivo analyses and in vitro experiments. Pharmacological inhibition of the methionine cycle and modulation of key metabolic genes was employed, where molecular and biological analyses were performed.ResultsTAMs have increased methionine cycle activity that are mainly attributed to elevated methionine adenosyltransferase II alpha (MAT2A) levels. MAT2A modulates the activation and maintenance of the phenotype of TAMs and mediates the upregulation of RIP1 by increasing the histone H3K4 methylation (H3K4me3) at its promoter regions.ConclusionsOur data cast light on a novel mechanism by which methionine metabolism regulates the anti-inflammatory functions of monocytes in GC. MAT2A might be a potential therapeutic target for cancer cells as well as TAMs in GC.


Cancers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1330
Author(s):  
Filipe Pinto ◽  
Liliana Santos-Ferreira ◽  
Marta T. Pinto ◽  
Catarina Gomes ◽  
Celso A. Reis

Biglycan (BGN gene), an extracellular proteoglycan, has been described to be associated with cancer aggressiveness. The purpose of this study was to clarify the clinical value of biglycan as a biomarker in multiple independent GC cohorts and determine the in vitro and in vivo role of biglycan in GC malignant features. We found that BGN is commonly over-expressed in all analyzed cohorts, being associated with disease relapse and poor prognosis in patients with advanced stages of disease. In vitro and in vivo experiments demonstrated that biglycan knock-out GC cells display major phenotypic changes with a lower cell survival, migration, and angiogenic potential when compared with biglycan expressing cells. Biglycan KO GC cells present increased levels of PARP1 and caspase-3 cleavage and a decreased expression of mesenchymal markers. Importantly, biglycan deficient GC cells that were supplemented with exogenous biglycan were able to restore biological features, such as survival, clonogenic and migratory capacities. Our in vitro and in vivo findings were validated in human GC samples, where BGN expression was associated with several oncogenic gene signatures that were associated with apoptosis, cell migration, invasion, and angiogenesis. This study provided new insights on biglycan role in GC that should be taken in consideration as a key cellular regulator with major impact in tumor progression and patients’ clinical outcome.


2007 ◽  
Vol 292 (4) ◽  
pp. L915-L923 ◽  
Author(s):  
Jaime Chávez ◽  
Patricia Segura ◽  
Mario H. Vargas ◽  
José Luis Arreola ◽  
Edgar Flores-Soto ◽  
...  

Organophosphates induce bronchoobstruction in guinea pigs, and salbutamol only transiently reverses this effect, suggesting that it triggers additional obstructive mechanisms. To further explore this phenomenon, in vivo (barometric plethysmography) and in vitro (organ baths, including ACh and substance P concentration measurement by HPLC and immunoassay, respectively; intracellular Ca2+ measurement in single myocytes) experiments were performed. In in vivo experiments, parathion caused a progressive bronchoobstruction until a plateau was reached. Administration of salbutamol during this plateau decreased bronchoobstruction up to 22% in the first 5 min, but thereafter airway obstruction rose again as to reach the same intensity as before salbutamol. Aminophylline caused a sustained decrement (71%) of the parathion-induced bronchoobstruction. In in vitro studies, paraoxon produced a sustained contraction of tracheal rings, which was fully blocked by atropine but not by TTX, ω-conotoxin (CTX), or epithelium removal. During the paraoxon-induced contraction, salbutamol caused a temporary relaxation of ∼50%, followed by a partial recontraction. This paradoxical recontraction was avoided by the M2- or neurokinin-1 (NK1)-receptor antagonists (methoctramine or AF-DX 116, and L-732138, respectively), accompanied by a long-lasting relaxation. Forskolin caused full relaxation of the paraoxon response. Substance P and, to a lesser extent, ACh released from tracheal rings during 60-min incubation with paraoxon or physostigmine, respectively, were significantly increased when salbutamol was administered in the second half of this period. In myocytes, paraoxon did not produce any change in the intracellular Ca2+ basal levels. Our results suggested that: 1) organophosphates caused smooth muscle contraction by accumulation of ACh released through a TTX- and CTX-resistant mechanism; 2) during such contraction, salbutamol relaxation is functionally antagonized by the stimulation of M2 receptors; and 3) after this transient salbutamol-induced relaxation, a paradoxical contraction ensues due to the subsequent release of substance P.


Author(s):  
Sha Sumei ◽  
Kong Xiangyun ◽  
Chen Fenrong ◽  
Sun Xueguang ◽  
Hu Sijun ◽  
...  

Background/AimsThe role of DHRS3 in human cancer remains unclear. Our study explored the role of DHRS3 in gastric cancer (GC) and its clinicopathological significance and associated mechanisms.MaterialsBisulfite-assisted genomic sequencing PCR and a Mass-Array system were used to evaluate and quantify the methylation levels of the promoter. The expression levels and biological function of DHRS3 was examined by both in vitro and in vivo assays. A two-way hierarchical cluster analysis was used to classify the methylation profiles, and the correlation between the methylation status of the DHRS3 promoter and the clinicopathological characteristics of GC were then assessed.ResultsThe DHRS3 promoter was hypermethylated in GC samples, while the mRNA and protein levels of DHRS3 were significantly downregulated. Ectopic expression of DHRS3 in GC cells inhibited cell proliferation and migration in vitro, decreased tumor growth in vivo. DHRS3 methylation was correlated with histological type and poor differentiation of tumors. GC patients with high degrees of CpG 9.10 methylation had shorter survival times than those with lower methylation.ConclusionDHRS3 was hypermethylated and downregulated in GC patients. Reduced expression of DHRS3 is implicated in gastric carcinogenesis, which suggests DHRS3 is a tumor suppressor.


2021 ◽  
Author(s):  
Shenshuo Gao ◽  
Zhikai Zhang ◽  
Xubin Wang ◽  
Yan Ma ◽  
Chensheng Li ◽  
...  

Abstract Background: Gastric cancer (GC) is one of the most common malignancies, and more and more evdiences show that the pathogenesis is regulated by various miRNAs.In this study, we investigated the role of miR-875 in GC. Methods:The expression of miR-875-5p was detected in human GC specimens and cell lines by miRNA RT-PCR. The effect of miR-875-5p on GC proliferation was determined by CCK-8 proliferation assay and EDU assay. Migration and invasion were examined by transwell migration and invasion assay and wound healing assay. The interaction between miR-875-5p and its target gene USF2 was verified by a dual luciferase reporter assay. The effects of miR-875-5p in vivo were studied in xenograft nude mice models.Related proteins were detected by Western blot.Results:The results showed that miR-875-5p inhibited the proliferation, migration and invasion of gastric cancer cells in vitro, and inhibited tumorigenesis in vivo. USF2 proved to be a direct target of miR-875-5p. Knockdown of USF2 partially counteracts the effects of miR-875-5p inhibitors.Overexpression of miR-875-5p can inhibit proliferation, migration, and invasion through the TGF-β signaling pathway by down-regulation of USF2 in GC, providing a new research direction for the diagnosis and targeted therapy of GC.Conclusions: MiR-875-5pcan inhibited the progression of GC by directly targeting USF2 and negatively regulating TGF-β signaling pathway.In the future, miR-875-5p is expected to be used as a potential therapeutic target for GC therapy.


2020 ◽  
Author(s):  
Hui Guo ◽  
Jianping Zou ◽  
Ling Zhou ◽  
Yan He ◽  
Miao Feng ◽  
...  

Abstract Background:Nucleolar and spindle associated protein (NUSAP1) is involved in tumor initiation, progression and metastasis. However, there are limited studies regarding the role of NUSAP1 in gastric cancer (GC). Methods: The expression profile and clinical significance of NUSAP1 in GC were analysed in online database using GEPIA, Oncomine and KM plotter, which was further confirmed in clinical specimens.The functional role of NUSAP1 were detected utilizing in vitro and in vivo assays. Western blotting, qRT-PCR, the cycloheximide-chase, immunofluorescence staining and Co-immunoprecipitaion (Co-IP) assays were performed to explore the possible molecular mechanism by which NUSAP1 stabilizes YAP protein. Results:In this study, we found that the expression of NUSAP1 was upregulated in GC tissues and correlates closely with progression and prognosis. Additionally, abnormal NUSAP1 expression promoted malignant behaviors of GC cells in vitro and in a xenograft model. Mechanistically, we discovered that NUSAP1 physically interacts with YAP and furthermore stabilizes YAP protein expression, which induces the transcription of Hippo pathway downstream target genes. Furthermore, the effects of NUSAP1 on GC cell growth, migration and invasion were mainly mediated by YAP. Conclusions:Our data demonstrates that the novel NUSAP1-YAP axis exerts an critical role in GC tumorigenesis and progression, and therefore could provide a novel therapeutic target for GC treatment.


Author(s):  
Xiong Shu ◽  
Pan-Pan Zhan ◽  
Li-Xin Sun ◽  
Long Yu ◽  
Jun Liu ◽  
...  

BackgroundFocusing on antiangiogenesis may provide promising choices for treatment of gastric cancer (GC). This study aimed to investigate the mechanistic role of BCAT1 in the pathogenesis of GC, particularly in angiogenesis.MethodsBioinformatics and clinical samples analysis were used to investigate the expression and potential mechanism of BCAT1 in GC. BGC823 cells with BCAT1 overexpression or silencing were induced by lentiviral transduction. Cell phenotypes and angiogenesis were evaluated. The relevant proteins were quantized by Western blotting, immunohistochemistry, or immunofluorescence. Xenograft models were constructed to confirm the role of BCAT1 in vivo.ResultsBCAT1 was overexpressed in GC patients and associated with lower survival. BCAT1 expression was correlated with proliferation-, invasion-, or angiogenesis-related markers expression and pathways. Silencing BCAT1 expression suppressed cell viability, colony formation, cycle progression, invasion, and angiogenesis of BGC823 cells, as well as the tumor growth of xenograft models, whereas overexpressing BCAT1 had the opposite results both in vitro and in vivo. Bioinformatics analysis and Western blotting demonstrated that BCAT1 activated the PI3K/AKT/mTOR pathway. The addition of LY294002 reversed the tumor growth induced by BCAT1 overexpression, further verifying this mechanism.ConclusionBCAT1 might act as an oncogene by facilitating proliferation, invasion, and angiogenesis through activation of the PI3K/AKT/mTOR pathway. This finding could aid the optimization of antiangiogenesis strategies.


Sign in / Sign up

Export Citation Format

Share Document