scholarly journals Lytic Enzymes of Aspergillus piperis as a Tool for Attacking Some Phytopathogenic Fungi In vitro with Special Reference to its Cytotoxicity

Author(s):  
Samah Abd El-Kader El-Debaiky ◽  
Anwer S.M. El-Badry

The antagonistic activity of Aspergillus piperis against Fusarium oxysporum f. sp. fabae (FOF) and Sclerotinia sclerotiorum were examined and showed multiple signs of hyphal interactions. Microscopic examination of contact regions among A. piperis and each pathogen revealed distinct enzymatic lysis of pathogenic hyphal cell walls. Therefore, it is important to estimate the lytic enzyme activity of A. piperis. Extracellular lytic enzymes are important offensive forces for A. piperis as a biological control agent. Chitinase, phospholipase, and protease recorded relatively high activity from a culture age of 10 days (82.3, 42.4, and 6.2 U/ml, respectively). Enzymatic persistence was measured at room temperature, recording relatively long periods, saving 54%, 46%, and 21% of their activity, respectively. The cytotoxicity of the crude culture filtrate of A. piperis was examined in MCF7 and WI38 human cell lines. The cell viability (IC50) value of the fungal filtrate was estimated after 24 h and 48 h. The results revealed that IC50 values against the MCF7 cell line were inoperative after 24 h and were recorded 80 μg/ml after 48 h. In contrast, IC50 values against the WI38 cell line were 85.69 and 69.8 μg/ml after 24 and 48 h, respectively.

Agronomy ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 891
Author(s):  
Mila Santos ◽  
Fernando Diánez ◽  
Alejandro Moreno-Gavíra ◽  
Brenda Sánchez-Montesinos ◽  
Francisco J. Gea

A study was conducted to explore the efficacy of potential biocontrol agent Cladobotryum mycophilum against different phytopathogenic fungi. The growth rates of 24 isolates of C. mycophilum were determined, and their antagonistic activity was analysed in vitro and in vivo against Botrytis cinerea, Fusarium oxysporum f. sp. radicis-lycopersici, Fusarium oxysporum f.sp. cucumerinum, Fusarium solani, Phytophthora parasitica, Phytophthora capsici, Pythium aphanidermatum and Mycosphaerella melonis. Most isolates grow rapidly, reaching the opposite end of the Petri dish within 72–96 h. Under dual-culture assays, C. mycophilum showed antagonistic activity in vitro against all phytopathogenic fungi tested, with mycelial growth inhibition ranging from 30 to 90% against all the different phytopathogens tested. Similarly, of all the selected isolates, CL60A, CL17A and CL18A significantly (p < 0.05) reduced the disease incidence and severity in the plant assays compared to the controls for the different pathosystems studied. Based on these results, we conclude that C. mycophilum can be considered as a potential biological control agent in agriculture. This is the first study of Cladobotryum mycophilum as a biological control agent for different diseases caused by highly relevant phytopathogens in horticulture.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
M. M. Rahman ◽  
M. E. Ali ◽  
A. A. Khan ◽  
A. M. Akanda ◽  
Md. Kamal Uddin ◽  
...  

A total of 91 isolates of probable antagonistic bacteria of potato soft rot bacteriumErwinia carotovorasubsp.carotovora(Ecc) were extracted from rhizospheres and endophytes of various crop plants, different soil varieties, and atmospheres in the potato farming areas of Bangladesh. Antibacterial activity of the isolated probable antagonistic bacteria was testedin vitroagainst the previously identified most common and most virulent soft rot causing bacterial strain Ecc P-138. Only two isolates E-45 and E-65 significantly inhibited thein vitrogrowth of Ecc P-138. Physiological, biochemical, and carbon source utilization tests identified isolate E-65 as a member of the genusBacillusand the isolate E-45 asLactobacillussp. The stronger antagonistic activity against Ecc P-138 was found in E-65in vitroscreening and storage potatoes. E-65 reduced the soft rot infection to 22-week storage potatoes of different varieties by 32.5–62.5% in model experiment, demonstrating its strong potential to be used as an effective biological control agent for the major pectolytic bacteria Ecc. The highest (62.5%) antagonistic effect of E-65 was observed in the Granola and the lowest (32.7%) of that was found in the Cardinal varieties of the Bangladeshi potatoes. The findings suggest that isolate E-65 could be exploited as a biocontrol agent for potato tubers.


2021 ◽  
Vol 7 (8) ◽  
pp. 598
Author(s):  
Brenda Sánchez-Montesinos ◽  
Mila Santos ◽  
Alejandro Moreno-Gavíra ◽  
Teresa Marín-Rodulfo ◽  
Francisco J. Gea ◽  
...  

Our purpose was to evaluate the ability of Trichoderma aggressivum f. europaeum as a biological control agent against diseases from fungal phytopathogens. Twelve isolates of T. aggressivum f. europaeum were obtained from several substrates used for Agaricus bisporus cultivation from farms in Castilla-La Mancha (Spain). Growth rates of the 12 isolates were determined, and their antagonistic activity was analysed in vitro against Botrytis cinerea, Sclerotinia sclerotiorum, Fusarium solani f. cucurbitae, Pythium aphanidermatum, Rhizoctonia solani, and Mycosphaerella melonis, and all isolates had high growth rates. T. aggressivum f. europaeum showed high antagonistic activity for different phytopathogens, greater than 80%, except for P. aphanidermatum at approximately 65%. The most effective isolate, T. aggressivum f. europaeum TAET1, inhibited B. cinerea, S. sclerotiorum, and M. melonis growth by 100% in detached leaves assay and inhibited germination of S. sclerotiorum sclerotia. Disease incidence and severity in plant assays for pathosystems ranged from 22% for F. solani to 80% for M. melonis. This isolate reduced the incidence of Podosphaera xanthii in zucchini leaves by 66.78%. The high compatibility by this isolate with fungicides could allow its use in combination with different pest management strategies. Based on the results, T. aggressivum f. europaeum TAET1 should be considered for studies in commercial greenhouses as a biological control agent.


AgriPeat ◽  
2019 ◽  
Vol 19 (02) ◽  
pp. 68-76
Author(s):  
Admin Journal

ABSTRACTThe Sclerotium Rot Disease is highly destructive to the scallions cultivation in the peat soil. Theantagonistic fungi isolated from the rhizosphere and the endophytes of healthy plants, have beenproven to be able to reduce Sclerotium rolfsii. The aim of this study was to evaluate thecharacteristics of antagonistic fungi from rhizosphere and endophytes of Scallions to S. rolfsii in- vitro in the laboratory. The purpose of this study was also to perform the suppression test on theintensity of Sclerotium rolfsiiRot Disease in planta in the peat media in the screen house. Thisresearch it was shown that genus Fusarium, Penicillium, Aspergillusas antagonistic fungi, wereidentified from the endophytes, meanwhile genus Trichoderma, Penicillium dan Aspergillus sp. were identified from the rhizosphere. Trichoderma Rz-1 and Trichoderma Rz-3 isolated from therhizosphere was shown to have the highest antagonistic activity by 94,4 %, followed by AspergillusEd-2, which was isolated from the endophytes by 83,8%. In planta on peat media, TrichodermaRz-1 was capable to demonstrate 82,19% of antagonistic effect and it could suppress SclerotiumRot Diseasehence it produced the fresh weight of the plant highest to 19gcluster-1. Taken together,the result of this study showed that Trichoderma Rz-1 isolated from rhizosphere has been proven tobe the most beneficial to reduce the Sclerotium rolfsii on Scallions as a biological control agent,especially in peat soils.Keywords: biocontrol, rhizosphere,endophyte, scallions, Sclerotium rolfsii


2020 ◽  
Vol 30 (1) ◽  
Author(s):  
Zahaed Evangelista-Martínez ◽  
Erika Anahí Contreras-Leal ◽  
Luis Fernando Corona-Pedraza ◽  
Élida Gastélum-Martínez

Abstract Background Fungi are one of the microorganisms that cause most damage to fruits worldwide, affecting their quality and consumption. Chemical controls with pesticides are used to diminish postharvest losses of fruits. However, biological control with microorganisms or natural compounds is an increasing alternative to protect fruits and vegetables. In this study, the antifungal effect of Streptomyces sp. CACIS-1.5CA on phytopathogenic fungi that cause postharvest tropical fruit rot was investigated. Main body Antagonistic activity was evaluated in vitro by the dual confrontation over fungal isolates obtained from grape, mango, tomato, habanero pepper, papaya, sweet orange, and banana. The results showed that antagonistic activity of the isolate CACIS-1.5CA was similar to the commercial strain Streptomyces lydicus WYEC 108 against the pathogenic fungi Colletotrichum sp., Alternaria sp., Aspergillus sp., Botrytis sp., Rhizoctonia sp., and Rhizopus sp. with percentages ranging from 30 to 63%. The bioactive extract obtained from CACIS-1.5 showed a strong inhibition of fungal spore germination, with percentages ranging from 92 to 100%. Morphological effects as irregular membrane border, deformation, shrinkage, and collapsed conidia were observed on the conidia. Molecularly, the biosynthetic clusters of genes for the polyketide synthase (PKS) type I, PKS type II, and NRPS were detected in the genome of Streptomyces sp. CACIS-1.5CA. Conclusions This study presented a novel Streptomyces strain as a natural alternative to the use of synthetic fungicides or other commercial products having antagonistic microorganisms that were used in the postharvest control of phytopathogenic fungi affecting fruits.


2004 ◽  
Vol 94 (12) ◽  
pp. 1305-1314 ◽  
Author(s):  
O. Carisse ◽  
D. Rolland

Field and in vitro trials were conducted to establish the influence of the biological control agent Microsphaeropsis ochracea on the ejection pattern of ascospores by Venturia inaequalis and on apple scab development, and to establish the best timing of application. The ejection pattern of ascospores was similar on leaves sprayed with M. ochracea and on untreated leaves. Fall application of M. ochracea combined with a delayed-fungicide program was evaluated in orchards with intermediate and high scab risk. For both orchards, it was possible to delay the first three and two infection periods in 1998 and 1999, respectively, without causing significant increase or unacceptable leaf and fruit scab incidence. To evaluate the best timing of application, sterile leaf disks were inoculated with V. inaequalis and then with M. ochracea 0, 2, 4, 6, 8, 10, 12, 14, and 16 weeks later. After incubation under optimal conditions for pseudothecia development, the number of ascospores was counted. Similarly, M. ochracea was sprayed on scabbed leaves on seven occasions from August to November 1999 and 2000. Leaves were overwintered on the orchard floor and ascospore production was evaluated the following spring. Ascospore production was reduced by 97 to 100% on leaf disks inoculated with M. ochracea less than 6 weeks after inoculation with V. inaequalis, but ascospore production increased with increasing period of time when M. ochracea was applied 8 to 16 weeks after the inoculation with V. inaequalis. In the orchard, the greatest reduction in production of ascospores (94 to 96% in 2000 and 99% in 2001) occurred on leaves sprayed with M. ochracea in August. The production of ascospores was reduced by 61 to 84% in 2000 and 93% in 2001 on leaves sprayed with M. ochracea in September, reduced by 64 to 86% in 2000 and 74 to 89% in 2001 on leaves sprayed in October, and reduced by 54 and 67% in 2000 and 2001, respectively, on leaves sprayed in November. It was concluded that M. ochracea should be applied in August or September and that ascospore maturation models and delayed-fungicide program could be used in orchards treated with this biological control agent.


2021 ◽  
Author(s):  
Shuen-Huang Tsai ◽  
Yu-Ting Chen ◽  
Yu-Liang Yang ◽  
Bo-Yi Lee ◽  
Chien-Jui Huang ◽  
...  

Paenibacillus polymyxa is a beneficial bacterium for plant health. Paenibacillus polymyxa TP3 exhibits antagonistic activity toward Botrytis cinerea and alleviates gray mold symptoms on the leaves of strawberry plants. Moreover, suppression of gray mold on the flowers and fruits of strawberry plants in field trials, including vegetative cells and endospores, was demonstrated, indicating the potential of strain TP3 as a biological control agent. To examine the anti-B. cinerea compounds produced by P. polymyxa TP3, matrix‐assisted laser‐desorption/ionization time‐of‐flight mass spectrometry was performed and fusaricidin-corresponding mass spectra were detected. Moreover, fusaricidin-related signals appeared in imaging mass spectrometry of TP3 when confronted with B. cinerea. By using liquid chromatography-mass spectrometry-based molecular networking approach, several fusaricidins were identified including a new variant of m/z 917.5455 with serine in the first position of the hexapeptide. Via advanced mass spectrometry and network analysis, fusaricidin-type compounds produced by P. polymyxa TP3 were efficiently disclosed and were presumed to play roles in the antagonism against gray mold pathogen B. cinerea.


INDIAN DRUGS ◽  
2020 ◽  
Vol 57 (06) ◽  
pp. 49-59
Author(s):  
Priyambada Kshiroda Nandini Sarangi ◽  
Jyotirmaya Sahoo ◽  
Chita Ranjan Sahoo ◽  
Sudhir Kumar Paidesetty ◽  
Guru Prasad Mohanta

A series of eight quinoline-thiazole hybrid-bearing diazenylsulfonamides, 4a-4h, were synthesized and characterized by UV-Vis, FT/IR, 1H NMR and lC-MS. These compounds were formed when two prepared intermediate precursors of Schiff-base compounds, (E)-N-((2-chloroquinolin-3-yl)methylene)-4phenylthiazol-2-amine (3a) and (E)-N-((2-chloroquinolin-3-yl)methylene)-4-chlorophenylthiazol-2-amine (3b) were converted to the corresponding diazenyl compounds 4a-4h by treating and coupling with the individual diazonium salts of sulfa-drugs. The results of in vitro cytotoxic activity of the synthesized compounds in two cancer cell lines MCF 7 (human breast cancer cell line) and K562 (myelogenousleukemia cell line) have shown the IC50 values as given: 4b against MCF 7 19.52 and against K562 20.55µM; 4d against MCF 7 15.96 and against K562 13.05µM. Moreover, the compound 4-(((Z)-(2-chloroquinolin-3yl)(4-phenylthiazol-2-ylimino)methyl)diazenyl)benzenesulfonic acid (4d) induced maximum percentage of apoptosis. Furthermore, the in vitro antioxidant activity study revealed that among all the synthesized compounds, compound 4d has an excellent radical scavenging effect. Molecular docking was additionally performed to investigate the binding affinity of H-bonding interaction of synthesized compounds with a targeted enzyme and to compare it with the anticancer drugs, dasatinib, bosutinib and dacarbazine.


Toxins ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 322 ◽  
Author(s):  
Shuwu Zhang ◽  
Qi Zheng ◽  
Bingliang Xu ◽  
Jia Liu

Postharvest fungal disease is one of the significant factors that limits the storage period and marketing life of peaches, and even result in serious economic losses worldwide. Biological control using microbial antagonists has been explored as an alternative approach for the management of postharvest disease of fruits. However, there is little information available regarding to the identification the fungal pathogen species that cause the postharvest peach diseases and the potential and mechanisms of using the Bacillus subtilis JK-14 to control postharvest peach diseases. In the present study, a total of six fungal isolates were isolated from peach fruits, and the isolates of Alternaria tenuis and Botrytis cinerea exhibited the highest pathogenicity and virulence on the host of mature peaches. In the culture plates, the strain of B. subtilis JK-14 showed the significant antagonistic activity against the growth of A. tenuis and B. cinerea with the inhibitory rates of 81.32% and 83.45% at 5 days after incubation, respectively. Peach fruits treated with different formulations of B. subtilis JK-14 significantly reduced the mean disease incidences and lesion diameters of A. tenuis and B. cinerea. The greatest mean percent reduction of the disease incidences (81.99% and 71.34%) and lesion diameters (82.80% and 73.57%) of A. tenuis and B. cinerea were obtained at the concentration of 1 × 107 CFU mL−1 (colony forming unit, CFU). Treatment with the strain of B. subtilis JK-14 effectively enhanced the activity of the antioxidant enzymes-superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) in A. tenuis and B. cinerea inoculated peach fruits. As such, the average activities of SOD, POD and CAT were increased by 36.56%, 17.63% and 20.35%, respectively, compared to the sterile water treatment. Our results indicate that the isolates of A. tenuis and B. cinerea are the main pathogens that cause the postharvest peach diseases, and the strain of B. subtilis JK-14 can be considered as an environmentally-safe biological control agent for the management of postharvest fruits diseases. We propose the possible mechanisms of the strain of B. subtilis JK-14 in controlling of postharvest peach diseases.


1998 ◽  
Vol 26 (2_suppl) ◽  
pp. 617-658 ◽  
Author(s):  
Björn Ekwall ◽  
Frank A. Barile ◽  
Argelia Castano ◽  
Cecilia Clemedson ◽  
Richard H. Clothier ◽  
...  

The Multicenter Evaluation of In Vitro Cytotoxicity (MEIC) programme was set up to evaluate the relevance for human acute toxicity of in vitro cytotoxicity tests. At the end of the project in 1996, 29 laboratories had tested all 50 reference chemicals in 61 cytotoxicity assays. Five previous articles have presented the in vitro data and the human database to be used in the evaluation. This article presents three important parts of the final evaluation: a) a comparison of rat and mouse oral LD50 with human acute lethal doses for all 50 chemicals; b) a display of the correlations between IC50 (concentration causing 50% inhibition) values from all 61 assays and three independent sets of human acute lethal blood concentrations, i.e. clinical lethal concentrations, forensic lethal concentrations, and peak concentrations; and c) a series of comparisons between average IC50 values from ten human cell line 24-hour assays and human lethal blood concentrations. In the latter comparisons, results from correlations were linked with known human toxicity data for the chemicals, to provide an understanding of correlative results. This correlative/mechanistic approach had the double purpose of assessing the relevance of the in vitro cytotoxicities, and of testing a series of hypotheses connected with the basal cytotoxicity concept. The results of the studies were as follows. Rat LD50 predictions of human lethal dosage were only relatively good (R2 = 0.61), while mouse LD50s gave a somewhat better prediction (R2 = 0.65). Comparisons performed between IC50 values from the 61 assays and the human lethal peak concentrations demonstrated that human ceil line tests gave the best average results (R2 = 0.64), while mammalian and fish cell tests correlated less well (R2 = 0.52–0.58), followed by non-fish ecotoxicological tests (R2 = 0.36). Most of the 61 assays underpredicted human toxicity for digoxin, malathion, carbon tetrachloride and atropine sulphate. In the correlative/mechanistic study, the 50 chemicals were first separated into three groups: A = fast-acting chemicals with a restricted passage across the blood–brain barrier; B = slow-acting chemicals with a restricted passage across the blood–brain barrier; and C = chemicals which cross the blood–brain barrier freely, while inducing a non-specific excitation/depression of the central nervous system (CNS). The IC50 values for chemicals in group C were divided by a factor of ten to compensate for a hypothetical extra vulnerability of the CNS to cytotoxicity. Finally, the average human cell line IC50 values (24-hour IC50 for groups A and C, and after 48-hour for group B) were compared with relevant human lethal blood concentrations (peak concentrations for groups A and C, and 48-hour concentrations for group B). As a result, in vitro toxicity and in vivo toxicity correlated very well for all groups (R2 = 0.98, 0.82 and 0.85, respectively). No clear overprediction of human toxicity was made by the human cell tests. The human cell line tests underpredicted human toxicity for only four of the 50 chemicals. These outlier chemicals were digoxin, malathion, nicotine and atropine sulphate, all of which have a lethal action in man through interaction with specific target sites not usually found in cell lines. Potassium cyanide has a cellular human lethal action which cannot be measured by standard anaerobic cell lines. The good prediction of the human lethal whole-blood concentration of this chemical was not conclusive, i.e. was probably a “false good correlation”. Another two chemicals in group C resulted in “false good correlations”, i.e. paracetamol and paraquat. The comparisons thus indicated that human cell line cytotoxicities are relevant for the human acute lethal action for 43 of the 50 chemicals. The results strongly support the basal cytotoxicity concept, and further point to the non-specific CNS depression being the obligatory reaction of humans to cytotoxic concentrations of chemicals, provided that the chemicals are able to pass the blood–brain barrier.


Sign in / Sign up

Export Citation Format

Share Document