scholarly journals Investigating the Impacts of Temperature on the Electronic Conductivity of Si AND GaAs

Author(s):  
Okpaga D. M

Abstract: This work explains the impacts of temperature on the electronic conductivity of silicon and gallium arsenide. Illustrations of how conductivity varies at different temperatures were depicted using equations and graphs. The effective use of semiconductor materials depends on the proper fabrication of the material about its temperature dependence. Also, the analysis of the variation of electronic conductivity in both silicon and that of gallium arsenide with a small band gap is performed towards analyzing the impacts of this on silicon and gallium arsenide. Keywords: Temperature, Silicon, Gallium Arsenide, Conductivity, Variation.

Author(s):  
И.В. Боднарь ◽  
Б.Т. Чан ◽  
В.Н. Павловский ◽  
И.Е. Свитенков ◽  
Г.П. Яблонский

AbstractMnAgIn_7S_12 single crystals 16 mm in diameter and ~40 mm in length are grown by planar crystallization of the melt. It is shown that the material grown crystallizes with the formation of the cubic spinel structure. From the transmittance spectra recorded in the region of fundamental absorption in the temperature range 10–320 K, the band gap E _ g of the single crystals and its temperature dependence are determined. The dependence has a shape typical of most semiconductor materials: as the temperature is lowered, the band gap E _ g increases. A calculation is carried out, and it is shown that the calculated values are in agreement with the experimental data.


2017 ◽  
Vol 18 (2) ◽  
pp. 151-157 ◽  
Author(s):  
Md. Abdullah Al Humayun ◽  
AHM Zahirul Alam ◽  
Sheroz Khan ◽  
MohamedFareq AbdulMalek ◽  
Mohd Abdur Rashid

High temperature stability of band-gap energy of active layer material of a semiconductor device is one of the major challenges in the field of semiconductor optoelectronic device design. It is essential to ensure the stability in different band-gap energy dependent characteristics of the semiconductor material used to fabricate these devices either directly or indirectly. Different models have been widely used to analyze the band-gap energy dependent characteristics at different temperatures. The most commonly used methods to analyze the temperature dependence of band-gap energy of semiconductor materials are: Passler model, Bose–Einstein model and Varshni’s model. This paper is going to report the limitation of the Bose–Einstein model through a comparative analysis between Bose–Einstein model and Varshni’s model. The numerical analysis is carried out considering GaN as it is one of the most widely used semiconductor materials all over the world. From the numerical results it is ascertained that below the temperature of 95o K both the models show almost same characteristics. However beyond 95o K Varshni’s model shows weaker temperature dependence than that of Bose–Einstein model. Varshni’s model shows that the band-gap energy of GaN at 300o K is found to be 3.43eV, which establishes a good agreement with the theoretically calculated band-gap energy of GaN for operating at room temperature.


Author(s):  
Zonghao Shen ◽  
Ji Wu ◽  
Matthew W. Shorvon ◽  
Guillaume Cazaux ◽  
Stephen C. Parker ◽  
...  
Keyword(s):  
Band Gap ◽  

2021 ◽  
Author(s):  
Mingming Jiang ◽  
Yang Liu ◽  
Ruiming Dai ◽  
Kai Tang ◽  
Peng Wan ◽  
...  

Suffering from the indirect band gap, low carrier mobility, and large lattice mismatch with other semiconductor materials, one of the current challenges in Si-based materials and structures is to prepare...


2017 ◽  
Vol 5 (46) ◽  
pp. 12163-12171 ◽  
Author(s):  
Yinghui He ◽  
Jesse T. E. Quinn ◽  
Dongliang Hou ◽  
Jenner H.L. Ngai ◽  
Yuning Li

A novel small bandgap donor–acceptor polymer with a very small band gap of 0.95 eV shows promising photoresponse under near infrared light in phototransistors.


2007 ◽  
Vol 280-283 ◽  
pp. 919-924
Author(s):  
M.S. Jogad ◽  
V.K. Shrikhande ◽  
A.H. Dyama ◽  
L.A. Udachan ◽  
Govind P. Kothiyal

AC and DC conductivities have been measured by using the real (e¢) and imaginary (e¢¢) parts of the dielectric constant data of glass and glass-ceramics (GC) at different temperatures in the rage 297-642K and in the frequency range 100 Hz to 10 MHz. Using Anderson –Stuart model, we have calculated the activation energy, which is observed to be lower than that of the DC conductivity. The analysis for glass/glass-ceramics indicates that the conductivity variation with frequency exhibits an initial linear region followed by nonlinear region with a maximum in the high-frequency region. The observed frequency dependence of ionic conductivity has been analyzed within the extended Anderson–Stuart model considering both the electrostatic and elastic strain terms. In glass/glassceramic the calculations based on the Anderson-Stuart model agree with the experimental observations in the low frequency region but at higher frequencies there is departure from measured data.


2011 ◽  
Vol 483 ◽  
pp. 174-179 ◽  
Author(s):  
Ting Liang ◽  
Jian Jun Tang ◽  
Qian Qian Zhang ◽  
Yong Wang ◽  
Jing Li ◽  
...  

In this paper, We use a novel principle to detect acceleration and report how I-V characteristics and piezoresistance coefficient of AlGaN/GaN HEFT-micro-accelerometer are affected by setting different temperatures. It is shown that saturation current of device would go down if the temperature goes up, which is about 0.028mA/°C, based on the research. However, the device can work well at the temperature range of -50°C to 50°C, which indicates that it can work safely in the larger temperature range.


2017 ◽  
Vol 56 (9) ◽  
pp. 4990-4995 ◽  
Author(s):  
C. Yang ◽  
B. Y. Qu ◽  
S. S. Pan ◽  
L. Zhang ◽  
R. R. Zhang ◽  
...  

2017 ◽  
Vol 50 (40) ◽  
pp. 40LT02 ◽  
Author(s):  
Peiji Geng ◽  
Weiguo Li ◽  
Xianhe Zhang ◽  
Xuyao Zhang ◽  
Yong Deng ◽  
...  

2002 ◽  
Vol 81 (21) ◽  
pp. 3984-3986 ◽  
Author(s):  
G. Yu. Rudko ◽  
I. A. Buyanova ◽  
W. M. Chen ◽  
H. P. Xin ◽  
C. W. Tu

Sign in / Sign up

Export Citation Format

Share Document