scholarly journals A Smart Pest Control System Based on Automated Reverse Aerodynamics and Suction Technology

Author(s):  
Aniedu A.N

Abstract: Many diseases (including malaria, one of the deadliest diseases especially to those living in developing nations which kills hundreds on daily basis) are transmitted by household insects. Mosquitoes, one of these insects, bites humans and sucks their blood and are pathogens of several diseases (especially malaria) which causes ill health and many times lead to death if it is not well treated. This necessitates the need to smartly eliminate them without chemicals, which may be harmful to human health. This research aims at the design and development of a smart insect trap which attracts and contains household insects and pests automatically. The device incorporates a dual power supply that powers and charges the system, sensors which detects the presence of insects and triggers the vacuum suction mechanism automatically, a charge controller for controlling the charging of the installed battery, an ultraviolet light emitting section that lures the insects to the device, a chamber for containment and dehydration of the insect, and a smart microcontroller based control system. The developed design is smart, environmentally safe, portable and highly cost effective yet very efficient in eliminating household pathogen-transmitting insects and pests Keywords: reverse aerodynamics, pest control, smart systems, insect trap, vacuum suction, mosquitoes.

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Hongbin Chen ◽  
Shuai Yu ◽  
Haiyang Liu ◽  
Jie Liu ◽  
Yongguang Xiao ◽  
...  

AbstractAssessment of lung and heart states is of critical importance for patients with pneumonia. In this study, we present a small-sized and ultrasensitive accelerometer for continuous monitoring of lung and heart sounds to evaluate the lung and heart states of patients. Based on two-stage amplification, which consists of an asymmetric gapped cantilever and a charge amplifier, our accelerometer exhibited an extremely high ratio of sensitivity to noise compared with conventional structures. Our sensor achieves a high sensitivity of 9.2 V/g at frequencies less than 1000 Hz, making it suitable to use to monitor weak physiological signals, including heart and lung sounds. For the first time, lung injury, heart injury, and both lung and heart injuries in discharged pneumonia patients were revealed by our sensor device. Our sound sensor also successfully tracked the recovery course of the discharged pneumonia patients. Over time, the lung and heart states of the patients gradually improved after discharge. Our observations were in good agreement with clinical reports. Compared with conventional medical instruments, our sensor device provides rapid and highly sensitive detection of lung and heart sounds, which greatly helps in the evaluation of lung and heart states of pneumonia patients. This sensor provides a cost-effective alternative approach to the diagnosis and prognosis of pneumonia and has the potential for clinical and home-use health monitoring.


Nanoscale ◽  
2014 ◽  
Vol 6 (23) ◽  
pp. 14446-14452 ◽  
Author(s):  
Byung Wan Lim ◽  
Min Chul Suh

We have investigated a simple and cost-effective fabrication method for a porous polymer film employing the spin-coating process during continuous supply of water droplets by an ultrasonic humidifier.


2016 ◽  
Vol 9 (2) ◽  
pp. 423-440 ◽  
Author(s):  
K.-E. Min ◽  
R. A. Washenfelder ◽  
W. P. Dubé ◽  
A. O. Langford ◽  
P. M. Edwards ◽  
...  

Abstract. We describe a two-channel broadband cavity enhanced absorption spectrometer (BBCEAS) for aircraft measurements of glyoxal (CHOCHO), methylglyoxal (CH3COCHO), nitrous acid (HONO), nitrogen dioxide (NO2), and water (H2O). The instrument spans 361–389 and 438–468 nm, using two light-emitting diodes (LEDs) and a single grating spectrometer with a charge-coupled device (CCD) detector. Robust performance is achieved using a custom optical mounting system, high-power LEDs with electronic on/off modulation, high-reflectivity cavity mirrors, and materials that minimize analyte surface losses. We have successfully deployed this instrument during two aircraft and two ground-based field campaigns to date. The demonstrated precision (2σ) for retrievals of CHOCHO, HONO and NO2 are 34, 350, and 80 parts per trillion (pptv) in 5 s. The accuracy is 5.8, 9.0, and 5.0 %, limited mainly by the available absorption cross sections.


Actuators ◽  
2018 ◽  
Vol 7 (4) ◽  
pp. 84 ◽  
Author(s):  
Chun-Liang Lin ◽  
Hao-Che Hung ◽  
Jia-Cheng Li

Looking at new trends in global policies, electric vehicles (EVs) are expected to increasingly replace gasoline vehicles in the near future. For current electric vehicles, the motor current driving system and the braking control system are two independent issues with separate design. If a self-induced back-EMF voltage from the motor is a short circuit, then short-circuiting the motor will result in braking. The higher the speed of the motor, the stronger the braking effect. However, the effect is deficient quickly once the motor speed drops quickly. Traditional kinetic brake (i.e., in the short circuit is replaced by a resistor) and dynamic brake (the short circuit brake is replaced by a capacitor) rely on the back EMF alone to generate braking toque. The braking torque generated is usually not enough to effectively stop a rotating motor in a short period of time. In this research task, an integrated driving and braking control system is considered for EVs with an active regenerative braking control system where back electromagnetic field (EMF), controlled by the pulse-width modulation (PWM) technique, is used to charge a pump capacitor. The capacitor is used as an extra energy source cascaded with the battery as a charge pump. This is used to boost braking torque to stop the rotating motor in an efficient way while braking. Experiments are conducted to verify the proposed design. Compared to the traditional kinetic brake and dynamic brake, the proposed active regenerative control system shows better braking performance in terms of stopping time and stopping distance.


2017 ◽  
Vol 89 (6) ◽  
pp. 791-796
Author(s):  
Yasser A. Nogoud ◽  
Attie Jonker ◽  
Shuhaimi Mansor ◽  
A.A.A. Abuelnuor

Purpose This paper aims to propose a spreadsheet method for modeling and simulation of a retraction system mechanism for the retractable self-launching system for a high-performance glider. Design/methodology/approach More precisely, the method is based on parametric link design using Excel spreadsheets. Findings This method can be used for kinematic and dynamic analysis, graphical plotting and allows simulation of control kinematics with the ability to make quick and easy parametric changes to a design. It also has the ability to calculate the loads imposed on each component in the control system as a function of input loads and position. Practical implications This paper shows that it is possible to model complex control systems quickly and easily using spreadsheet programs already owned by most small companies. The spreadsheet model is a parametric model, and it gives a simple visual presentation of the control system with interactive movement and control by the user. Originality/value This spreadsheet model in conjunction with a simple CAD program enables the rapid and cost-effective development of control system components.


2014 ◽  
Vol 14 (8) ◽  
pp. 5802-5806
Author(s):  
Dong Hyung Lee ◽  
Seok Jae Lee ◽  
Ja-Ryong Koo ◽  
Ho Won Lee ◽  
Hyun Su Shin ◽  
...  

Webology ◽  
2021 ◽  
Vol 18 (Special Issue 05) ◽  
pp. 1137-1157
Author(s):  
V. Vamsi Krishna ◽  
G. Gopinath

Automatic functional tests are a long-standing issue in software development projects, and they are still carried out manually. The Selenium testing framework has gained popularity as an active community and standard environment for automated assessment of web applications. As a result, the trend setting of web services is evolving on a daily basis, and there is a need to improve automatic testing. The study involves to make the system to understand the experiences of previous test cases and apply new cases to predict the status of test case using Tanh activated Clustering and Classification model (TACC). The primary goal is to improve the model's clustering and classification output. The outcomes show that the TACC model has increased performance and demonstrated that automated testing results can be predicted, which is cost effective and reduces manual effort to a greater extent.


2021 ◽  
Vol 11 (22) ◽  
pp. 11043
Author(s):  
Urs Giger ◽  
Stefan Kleinhansl ◽  
Horst Schulte

New locations for onshore technology, which have not been considered so far, must be developed to increase the total installed capacity of renewable energies, especially wind energy. For this purpose, cost-effective wind turbines, even in difficult-to-access locations, such as mountainous and high-mountainous areas, must be designed. This paper presents a novel wind turbine with a related control system that meets these requirements. The proposed turbine uses a multi-rotor configuration with five rotors arranged in a star shape configuration. Each rotor drive train combines up to 12 generators in a maintenance-friendly multi-generator concept. A suitable observer-based control for load mitigation in the full-load region is proposed for the multi-rotor and multi-generator design. Simulations are used to demonstrate the applicability and practical benefits of this concept.


2018 ◽  
pp. 34-37
Author(s):  
N. A. Aksenova ◽  
E. Yu. Lipatov ◽  
T. A. Haritonova

The article presents the experience of drilling horizontal wells at the Koshilskoye oil field in Jurassic sediments (UV1 formation) with application of environmentally safe emulsion drilling mud system BARADRIL-N XP-07 which has proved cost-effective.


2021 ◽  
Author(s):  
Sunil T. Galatage ◽  
Aditya S. Hebalkar ◽  
Shradhey V. Dhobale ◽  
Omkar R. Mali ◽  
Pranav S. Kumbhar ◽  
...  

Nanotechnology is an expanding area of research where we use to deal with the materials in Nano-dimension. The conventional procedures for synthesizing metal nanoparticles need to sophisticated and costly instruments or high-priced chemicals. Moreover, the techniques may not be environmentally safe. Therefore “green” technologies for synthesis of nanoparticles are always preferred which is simple, convenient, eco-friendly and cost effective. Green synthesis of nanoparticle is a novel way to synthesis nanoparticles by using biological sources. It is gaining attention due to its cost effective, ecofriendly and large scale production possibilities. Silver nanoparticles (AgNPs) are one of the most vital and fascinating nanomaterials among several metallic nanoparticles that are involved in biomedical applications. It has vital importance in nanoscience and naomedicines to treat and prevent vital disease in human beings especially in cancer treatment. In current work we discussed different methods for synthesis of AgNPs like biological, chemical and physical along with its characterization. We have also discussed vital importance of AgNPs to cure life threatnign diseases like cancer along with antidiabetic, antifungal, antiviral and antimicrobial alog with its molecular mode of action etc. Finally we conclude by discussing future prospects and possible applications of silver nano particles.


Sign in / Sign up

Export Citation Format

Share Document