scholarly journals Evaluation of the anti-diabetic effect of the methanol leaf extract and fractions of Dennettia tripetala G. Bak (Annonaceae) in alloxan- induced diabetic mice

2020 ◽  
Vol 10 (2) ◽  
pp. 129-139
Author(s):  
Uchenna Collins Abonyi ◽  
Moses A Omoiri ◽  
Peter A Akah

This study evaluated the anti-diabetic properties of the methanol extract and fractions of Dennettia tripetala leaves in alloxan diabetic rats. The crude  methanol extract (ME), n-hexane  (NF), ethyl acetate  (EAF), butanol  (BF) and water  (WF) fractions,  were tested for anti-diabetic activity in  alloxan-induced diabetic mice. The extracts and its fractions were screened for phytochemical constituents. Glibenclamide was used as the standard anti-diabetic treatment   Fasting blood glucose (FBG) levels were determined using a glucometer.  Lipid profile parameters were also assessed.  Histopathological examination of the pancreas was performed. The presence of glycosides, saponins, reducing sugars, fats and oil, alkaloids, carbohydrates, flavonoids, proteins and tannins were detected in ME, and the fractions. Treatment of the rats with the extract and its fractions reduced FBG levels significantly (p < 0.05) within 10 hours of acute treatment and 14 days short term treatment.  The highest reduction was by the crude extract,( ME 500 mg/kg) with percentage reduction of 62.89 %. The study revealed  significant (p < 0.05) reductions in serum triglyceride, serum cholesterol and LDL levels  by the extracts and its fractions  while a significant (p <  0.05) increase  in HDL levels was evident .  The effect of the extract and fractions on body weight indicated a moderate weight gain. Treatment with high dose of the extract and fractions (500 mg/kg) resulted in marked rejuvenation of the pancreatic β cells. The results of this study suggest that the leaves of Dennetia tripetala are endowed with potent anti-diabetic and antilipidemic properties.   Keywords: Dennetia tripetala, Antidiabetic, Alloxan, Lipid profile, Histopathplogy.

Molecules ◽  
2018 ◽  
Vol 24 (1) ◽  
pp. 46 ◽  
Author(s):  
Siwen Yang ◽  
Yuhan Meng ◽  
Jingmin Yan ◽  
Na Wang ◽  
Zhujun Xue ◽  
...  

Despite the edible fungus Amillariella mellea possessing a variety of biological activities, its effects on diabetes are still unclear. Polysaccharides are the main bioactive ingredients. In order to destroy the cell wall to obtain more polysaccharides, we used NaOH solution to extract Amillariella mellea fruiting bodies. The alkali extraction (AAMP) was identified as a polysaccharide-enriched fraction. Using type 2 diabetic rats induced by co-treatment of a high fat diet (HFD) and dexamethasone (DEX), we evaluated the hypoglycemic effects of AAMP. The results showed that oral administration of a high dose of AAMP markedly lowered fasting blood glucose, improving glucose intolerance and insulin resistance. AAMP also enhanced the level of LPL and the expressions of two critical lipases ATGL and HSL, leading to a decrease of serum triglyceride. In addition, AAMP specifically suppressed the expression of SREBP-1c, resulting in AAMP observably inhibiting lipid accumulation in the liver. These findings demonstrated that the improvement of AAMP on HFD/DEX-induced insulin resistance was correlated with its regulation of lipid metabolism. Our results indicated that AAMP could be a novel natural drug or health food used for the treatment of diabetes.


Author(s):  
Fadwa El-ouady ◽  
Fatima Bachir ◽  
Mohamed Eddouks

Aim: This study aimed to evaluate the antidiabetic and antihyperlipidemic effects of Asteriscus graveolens. Background: Asteriscus graveolens (Asteraceae) is a medicinal plant widely used by the Moroccan population to treat various diseases including diabetes. Objective: This work aimed to assess the capacity of flavonoids extracted from Asteriscus graveolens (FEE) to improve diabetes mellitus and dyslipidemia in normal and STZ-induced diabetic rats. Methods: Flavonoids were extracted from A. graveolens using the Soxhlet apparatus and using different organic solvents. Normal and streptozotocin-induced diabetic rats were treated orally by the extract of A. graveolens at a dose of 10 mg/kg. The oral treatment during 15 days was used to evaluate the effect of the flavonoids extracted from A. graveolens on blood glucose level and lipid profile in normal and diabetic rats. The oral glucose tolerance test as well as the analysis of histopathological examination of liver was performed. The antioxidant activity of FEE was also assessed by the method of trapping of free radical 2,2-diphenyl-1 picrylhydrazyl (DPPH), in order to estimate the mechanisms of action involved by FEE to improve hyperglycemia and lipid profile in normal and diabetic rats. Results: FEE reduced serum glucose concentrations in both normal and diabetic rats and exhibited in the last group lowering total cholesterol and triglycerides effects as well as improvement of the HDL-cholesterol serum level. In addition, a remarkable influence on glucose tolerance was also noticed after FEE treatment. Moreover, FEE was able to improve histopathological status of liver and possess a potential antioxidant effect in vitro. Conclusion: In conclusion, this study demonstrates the hypoglycemic and antihyperlipidemic effects of FEE in rats supporting then its traditional use for the management of diabetes.


2015 ◽  
Vol 36 (6) ◽  
pp. 2307-2316 ◽  
Author(s):  
Xiaohui Xu ◽  
Tao Liang ◽  
Xing Lin ◽  
Qingwei Wen ◽  
Xingmei Liang ◽  
...  

Background: Averrhoacarambola L., which is a folk medicine used in diabetes mellitus (DM) in ancient China, has been reported to have anti-diabetic efficacy. Aims: The aim of this study was to evaluate the hypoglycemic effect of the extract of Averrhoacarambola L. root (EACR) on the regulation of the Toll-like receptor 4 (TLR4)-Nuclear-factor kappa B (NF-κB) pathway in B) pathway in streptozotocin (STZ)-induced diabetic mice. Methods: the mice were injected with STZ (120 mg/kg body weight) via a tail vein. After 72 h, the mice with FBG = 11.1 mmol/L were confirmed as having diabetes. Subsequently, the mice were treated intragastrically with EACR (300, 600, 1200 mg/kg body weight/d) and metformin (320 mg/kg body weight/d) for 14 days. Results: As a result the serum fasting blood glucose (FBG), interleukin-6 (IL-6) and tumor necrosis factor-a (TNF-a) levels were decreased following EACR administration. Immunohistochemical analysis revealed that the pancreatic tissue expression levels of TLR4 and NF-κB were downregulated after EACR administration. EACR suppressed pancreatic mRNA expression level of TLR4 and blocked the downstream NF-κB pathway in the pancreas. According to Western blot analysis EACR suppressed pancreatic TLR4 and NF-κB protein expression levels. Histopathological examination of the pancreas showed that STZ-induced pancreas lesions were alleviated by the EACR treatment. Conclusion: These findings suggest that the modulation of the IL-6 and TNF-a inflammatory cytokines and the suppression of the TLR4-NF-κB pathway are most likely involved in the anti-hyperglycemic effect of EACR in STZ-induced diabetic mice.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3262
Author(s):  
Nada Oršolić ◽  
Damir Sirovina ◽  
Dyana Odeh ◽  
Goran Gajski ◽  
Vedran Balta ◽  
...  

Diabetic dyslipidemia and hyperglycemia contribute to excessive reactive oxygen species (ROS) production, leading to deleterious complications, such as nephropathy, atherosclerosis and cardiac dysfunction, and target major organs in the body. The aim of this study was to investigate the effect of caffeic acid (CA) on mouse weight and survival, serum level of fasting blood glucose (FBG), serum lipid parameters and atherogenic indices, oxidative damage in blood, liver and kidney tissue, pathophysiological changes and their function markers in healthy and alloxan-induced type 1 diabetic mice. Diabetes was induced in mice with a single intravenous injection of alloxan (75 mg kg−1). Two days later, CA (50 mg kg−1) was given intraperitoneally for seven days in diabetic mice. Diabetes affected glucose level, lipid profile, hematological and biochemical parameters, induced DNA damage and apoptotic/necrotic death in whole blood cells, liver and kidney, leading to weight loss and a decreased lifespan. CA treatment of diabetic mice revealed a protective effect on the liver and kidney, hypoglycemic and hypolipidemic properties and high protection against atherogenic outcomes. The obtained results suggest that CA is a safe and potent agent against diabetes that acts as an effective antioxidant in reducing serum glucose, lipid profile and atherogenic indices, leading to increased lifespan in mice.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Wenting Lin ◽  
Wenxiang Wang ◽  
Dongdong Liao ◽  
Damiao Chen ◽  
Pingping Zhu ◽  
...  

This study investigated the effects of polysaccharides fromEnteromorpha prolifera(PEP) on glucose metabolism in a rat model of diabetes mellitus (DM). PEP (0, 150, 300, and 600 mg/kg) was administered intragastrically to rats for four weeks. After treatment, fasting blood glucose (FBG) and insulin (INS) levels were measured, and the insulin sensitivity index (ISI) was calculated. The morphopathological changes in the pancreas were observed. Serum samples were collected to measure the oxidant-antioxidant status. The mRNA expression levels of glucokinase (GCK) and insulin receptor (InsR) in liver tissue and glucose transporter type 4 (GLUT-4) and adiponectin (APN) in adipose tissue were determined. Compared with the model group, the FBG and INS levels were lower, the ISI was higher, and the number of isletβ-cells was significantly increased in all the PEP groups. In the medium- and high-dose PEP groups, MDA levels decreased, and the enzymatic activities of SOD and GSH-Px increased. The mRNA expression of InsR and GCK increased in all the PEP groups; APN mRNA expression increased in the high-dose PEP group, and GLUT-4 mRNA expression increased in adipose tissue. These findings suggest that PEP is a potential therapeutic agent that can be utilized to treat DM.


Pharmacology ◽  
2017 ◽  
Vol 101 (1-2) ◽  
pp. 9-21 ◽  
Author(s):  
Adel Galal El-Shemi ◽  
Osama Adnan Kensara ◽  
Aiman Alsaegh ◽  
Mohammed Hasan Mukhtar

Aims: This study is aimed at evaluating the antidiabetic effects of thymoquinone (TQ) on streptozotocin (STZ)-induced diabetes in rats, and exploring the possible underlying mechanisms. Methods: Diabetes was induced in adult male Wistar rats by intraperitoneal injection of freshly prepared STZ (65 mg/kg). After disease induction, 42 rats were equally assigned to: controls, STZ-diabetic group, and STZ-diabetic group treated with oral TQ (35 mg/kg/day) for 5 weeks. Fasting blood glucose levels were determined weekly, and the animals were euthanized at day 38 post-STZ injection. Blood samples were assessed for glucose-insulin homeostasis parameters (plasma glucose, glycated hemoglobin, serum insulin, homeostatic model assessment of insulin resistance, and insulin sensitivity index) and lipid profile. Resected pancreases were subjected to histological examination and immunohistochemical or enzyme-linked immunosorbent assay assessment to determine the pancreatic expression of insulin sensitizing β-cells, anti-apoptotic protein “survivin,” apoptosis-inducer “caspase-3,” prototypic angiogenic factors (vascular endothelial growth factor [VEGF] and endothelial cluster of differentiation 31 [CD31]), pro- and anti-inflammatory cytokines (interleukin-1beta [IL-1β] and interleukin-10 [IL-10], respectively), thiobarbituric acid reactive substances (TBARS), total glutathione (GSH), and superoxide dismutase (SOD). The hepato-renal statuses were assessed biochemically and histologically. Results: Therapy with TQ markedly improved the integrity of pancreatic islets, glucose-insulin homeostasis-related parameters, lipid profile parameters, and hepato-renal functional and histomorphological statuses that collectively were severely deteriorated in untreated diabetic group. Mechanistically, TQ therapy efficiently increased insulin producing β-cells, upregulated survivin, VEGF, CD31, IL-10, GSH and SOD, and downregulated caspase-3, IL-1β, and TBARSs in the pancreatic tissues of STZ-diabetic rats. Conclusions: These findings prove the anti-diabetic potential of TQ and its efficacy in regenerating pancreatic β-cells and ameliorating pancreatic inflammation and oxidative stress, and highlight its novelty in repressing apoptosis of β-cells and enhancing islet revascularization in STZ-diabetic rats. Further studies are required to support these findings and realize their possible clinical significance.


Author(s):  
Opeyemi O. Ayodele ◽  
Ifeoluwa M. Dada ◽  
Rotimi K. Adekunle

Aim: Diabetes mellitus (DM) is a prevalent metabolic disorder that leads to other microvascular and macrovascular complications. Diabetes affects fertility and blood clotting, and also cause impaired lipid profile thus leading to increased atherogenic risks and coronary diseases. This research investigates the effects of Carica papaya leaf methanol extract on fertility indices and lipid profile of male diabetic rats. Methodology: Male Wistar albino rats were randomly divided into five groups of six rats each. Diabetes was induced in the rats by a single intraperitoneal injection of streptozotocin (55 mg/kg). Diabetic rats were treated orally with 100 and 200 mg/kg C. papaya methanol extract for 14 days. At the end of administration, the plasma glucose concentration and lipid profile were assayed by spectrophotometric methods; seminal analysis was carried out for evaluation of morphology, motility and sperm count under the microscope. The bleeding and clotting times of the rats were also determined. Results: C. papaya leaf methanol extract caused significant (p = 0.05) reduction in plasma glucose, total cholesterol, triglycerides, VLDL-C, LDL-C, bleeding and clotting times of diabetic treated rats, while the HDL-C of treated groups were significantly (p = 0.05) elevated compared to the diabetic control. Percentage normal cells were lower in diabetic control rats (41.4±4.4%) and C. papaya treated groups (50.0±8.5% for 100 mg/kg; 47.5±9.1% for 200 mg/kg) compared with the normal control group (69.5±5.6%). Similar results were recorded for sperm count. The qualitative phytochemical screening showed the presence of steroids, anthraquinone, tannin, and other bioactive compounds. Conclusion: findings from this study indicated that C. papaya leaf methanol extract could possess hypoglycemic and hypolipidemic activities. Thus, could be considered as a potential source of bio pharmacological agent for management and control of DM and its complications. Prolonged administration of C. papaya leaves may negatively affect male fertility.


Author(s):  
Syed Akif Raza Kazmi ◽  
Muhammad Zahid Qureshi ◽  
Sadia . ◽  
Saleh S Alhewairini ◽  
Shaukat Ali ◽  
...  

Diabetes is a life-threatening disease and chronic diabetes affects the parts of the body including the liver, kidney and pancreas. The root cause of diabetes is mainly associated with oxidative stress produced by reactive oxygen species. The minocycline is a polyphenolic drug with excellent antioxidant activities. The objective of the present study was to investigate the antidiabetic potential of minocycline modified silver nanoparticles (Mino/AgNPs) against alloxan-induced diabetic mice. The Mino/AgNPs were synthesized using minocycline as reducing and stabilizing agents. UV-vis, FTIR, X-ray diffraction (XRD) and transmission electron microscopy (TEM) were applied for the characterization of Mino/AgNPs. The 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging assay was conducted to determine the antioxidant potential of newly synthesized Mino/AgNPs. The results revealed that the Mino/AgNPs showed higher radical scavenging activity (IC50 = 19.7 &micro;g/mL) as compared to the minocycline (IC50 = 26.0 &micro;g/mL) and ascorbic acid (IC50 = 25.2 &micro;g/mL). Further, the Mino/AgNPs were successfully employed to examine their antidiabetic potential against Alloxan-induced diabetic mice. Hematological results showed that the mice treated with Mino/AgNPs demonstrated a significant decrease in fasting blood glucose level and lipid profile as compared to the diabetic group. The histopathological examination confirmed that the diabetic mice treated with Mino/AgNPs showed significant recovery and revival of histo-morphology of kidney, central vein of liver and islet cells of the pancreas compared to the diabetic mice. Hence Mino/AgNPs have good antidiabetic potential and could be an appropriate nanomedicine to prevent the development of diabetes.


2017 ◽  
Vol 313 (2) ◽  
pp. F414-F422 ◽  
Author(s):  
Salma Malik ◽  
Kapil Suchal ◽  
Sana Irfan Khan ◽  
Jagriti Bhatia ◽  
Kamal Kishore ◽  
...  

Diabetic nephropathy (DN), a microvascular complication of diabetes, has emerged as an important health problem worldwide. There is strong evidence to suggest that oxidative stress, inflammation, and fibrosis play a pivotal role in the progression of DN. Apigenin has been shown to possess antioxidant, anti-inflammatory, antiapoptotic, antifibrotic, as well as antidiabetic properties. Hence, we evaluated whether apigenin halts the development and progression of DN in streptozotocin (STZ)-induced diabetic rats. Male albino Wistar rats were divided into control, diabetic control, and apigenin treatment groups (5–20 mg/kg po, respectively), apigenin per se (20 mg/kg po), and ramipril treatment group (2 mg/kg po). A single injection of STZ (55 mg/kg ip) was administered to all of the groups except control and per se groups to induce type 1 diabetes mellitus. Rats with fasting blood glucose >250 mg/dl were included in the study and randomized to different groups. Thereafter, the protocol was continued for 8 mo in all of the groups. Apigenin (20 mg/kg) treatment attenuated renal dysfunction, oxidative stress, and fibrosis (decreased transforming growth factor-β1, fibronectin, and type IV collagen) in the diabetic rats. It also significantly prevented MAPK activation, which inhibited inflammation (reduced TNF-α, IL-6, and NF-κB expression) and apoptosis (increased expression of Bcl-2 and decreased Bax and caspase-3). Furthermore, histopathological examination demonstrated reduced inflammation, collagen deposition, and glomerulosclerosis in the renal tissue. In addition, all of these changes were comparable with those produced by ramipril. Hence, apigenin ameliorated renal damage due to DN by suppressing oxidative stress and fibrosis and by inhibiting MAPK pathway.


Sign in / Sign up

Export Citation Format

Share Document