scholarly journals Oxidative stress-induced mitochondrial failure and vasoactive substances as key initiators of pathology favor the reclassification of Alzheimer Disease as a vasocognopathy

Nova ◽  
2008 ◽  
Vol 6 (10) ◽  
pp. 170
Author(s):  
Gjumrakch Aliev ◽  
Joséph Charles Lamanna ◽  
Ludis Morales Álvarez ◽  
Mark Eric Obrenovich ◽  
Gerardo Jesús Pacheco ◽  
...  

Alzheimer disease and cerebrovascular accident are two leading causes of age-related dementia. Increasing evidence supports the idea that chronic hypoperfusion is primarily responsible for the pathogenesis that underlies both disease processes. Hypoperfusion is associated with oxidative imbalance, largely due to reactive oxygen species, which is associated with other age-related degenerative disorders. Recent evidence indicates that a chronic injury stimulus induces the hypoperfusion seen in the microcirculation of vulnerable regions of the brain. This leads to energy failure, manifested by damaged mitochondrial ultrastructure. Mitochondrial derangements lead to the formation of a large number of electron-dense, ¿hypoxic¿ mitochondria and cause the overproduction of mitochondrial DNA (mtDNA) deletions, which is most likely due to double stranded breaks. Additionally, these mitochondrial abnormalities coexist with increased redox metal activity, lipid peroxidation, and RNA oxidation, all of which are well established features of Alzheimer disease pathology, prior to the appearance of amyloid b deposition. Alzheimer disease, oxidative stress occurs within various cellular compartments and within certain cell types more than others, namely the vascular endothelium, which is associated with atherosclerotic damage, as well as in pyramidal neurons and glia. Interestingly, these vulnerable cells show mtDNA deletions and oxidative stress markers only in the regions that are closely associated with damaged vessels. This evidence strongly suggests that chronic hypoperfusion induces the accumulation of the oxidative stress products. Furthermore, brain vascular wall lesions linearly correlate with the degree of neuronal and glial cell damage. We, therefore, conclude that chronic hypoperfusion is a key initiator of oxidative stress in various brain parenchymal cells, and the mitochondria appear to be primary targets for brain damage in Alzheimer disease. In this manuscript, we outline a role for the continuous accumulation of oxidative stress products, such as an abundance of nitric oxide products (via the overexpression of inducible and/or neuronal NO synthase (iNOS and nNOS respectively) and peroxynitrite accumulation, as secondary but accelerating factors compromising the blood brain barrier (BBB). If this turns out to be the case, pharmacological interventions that target chronic hypoperfusion might ameliorate the key features of dementing neurodegeneration.

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Paromita Majumder ◽  
Thomas S. Blacker ◽  
Lisa S. Nolan ◽  
Michael R. Duchen ◽  
Jonathan E. Gale

AbstractAn increasing volume of data suggests that changes in cellular metabolism have a major impact on the health of tissues and organs, including in the auditory system where metabolic alterations are implicated in both age-related and noise-induced hearing loss. However, the difficulty of access and the complex cyto-architecture of the organ of Corti has made interrogating the individual metabolic states of the diverse cell types present a major challenge. Multiphoton fluorescence lifetime imaging microscopy (FLIM) allows label-free measurements of the biochemical status of the intrinsically fluorescent metabolic cofactors NADH and NADPH with subcellular spatial resolution. However, the interpretation of NAD(P)H FLIM measurements in terms of the metabolic state of the sample are not completely understood. We have used this technique to explore changes in metabolism associated with hearing onset and with acquired (age-related and noise-induced) hearing loss. We show that these conditions are associated with altered NAD(P)H fluorescence lifetimes, use a simple cell model to confirm an inverse relationship between τbound and oxidative stress, and propose such changes as a potential index of oxidative stress applicable to all mammalian cell types.


2017 ◽  
Author(s):  
Nicola J. Drummond ◽  
Nick O. Davies ◽  
Janet E. Lovett ◽  
Mark R. Miller ◽  
Graeme Cook ◽  
...  

AbstractExcessive reactive oxygen species (ROS) can damage proteins, lipids, and DNA, which result in cell damage and death. The outcomes can be acute, as seen in stroke, or more chronic as observed in age-related diseases such as Parkinson’s disease. Here we investigate the antioxidant ability of a novel synthetic flavonoid, Proxison (7-decyl-3-hydroxy-2-(3,4,5-trihydroxyphenyl)-4-chromenone), using a range of in vitro and in vivo approaches. We show that, while it has radical scavenging ability on par with other flavonoids in a cell-free system, Proxison is orders of magnitude more potent than natural flavonoids at protecting neural cells against oxidative stress and is capable of rescuing damaged cells. The unique combination of a lipophilic hydrocarbon tail with a modified polyphenolic head group promotes efficient cellular uptake and mitochondrial localisation of Proxison. Importantly, in vivo administration of Proxison demonstrated effective and well tolerated neuroprotection against oxidative stress in a zebrafish model of dopaminergic neuronal loss.


2015 ◽  
Vol 2015 ◽  
pp. 1-24 ◽  
Author(s):  
Mika Reinisalo ◽  
Anna Kårlund ◽  
Ali Koskela ◽  
Kai Kaarniranta ◽  
Reijo O. Karjalainen

Numerous studies have highlighted the key roles of oxidative stress and inflammation in aging-related diseases such as obesity, type 2 diabetes, age-related macular degeneration (AMD), and Alzheimer’s disease (AD). In aging cells, the natural antioxidant capacity decreases and the overall efficiency of reparative systems against cell damage becomes impaired. There is convincing data that stilbene compounds, a diverse group of natural defence phenolics, abundant in grapes, berries, and conifer bark waste, may confer a protective effect against aging-related diseases. This review highlights recent data helping to clarify the molecular mechanisms involved in the stilbene-mediated protection against oxidative stress. The impact of stilbenes on the nuclear factor-erythroid-2-related factor-2 (Nrf2) mediated cellular defence against oxidative stress as well as the potential roles of SQSTM1/p62 protein in Nrf2/Keap1 signaling and autophagy will be summarized. The therapeutic potential of stilbene compounds against the most common aging-related diseases is discussed.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Bhaskar Ponugoti ◽  
Guangyu Dong ◽  
Dana T. Graves

Diabetes is a chronic metabolic disorder, characterized by hyperglycemia resulting from insulin deficiency and/or insulin resistance. Recent evidence suggests that high levels of reactive oxygen species (ROS) and subsequent oxidative stress are key contributors in the development of diabetic complications. The FOXO family of forkhead transcription factors including FOXO1, FOXO3, FOXO4, and FOXO6 play important roles in the regulation of many cellular and biological processes and are critical regulators of cellular oxidative stress response pathways. FOXO1 transcription factors can affect a number of different tissues including liver, retina, bone, and cell types ranging from hepatocytes to microvascular endothelial cells and pericytes to osteoblasts. They are induced by oxidative stress and contribute to ROS-induced cell damage and apoptosis. In this paper, we discuss the role of FOXO transcription factors in mediating oxidative stress-induced cellular response.


Antioxidants ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1497
Author(s):  
Luz del Mar Rivas-Chacón ◽  
Sofía Martínez-Rodríguez ◽  
Raquel Madrid-García ◽  
Joaquín Yanes-Díaz ◽  
Juan Ignacio Riestra-Ayora ◽  
...  

Age-related hearing loss (ARHL) is an increasing and gradual sensorineural hearing dysfunction. Oxidative stress is an essential factor in developing ARHL; additionally, premature senescence of auditory cells induced by oxidative stress can produce hearing loss. Hydrogen peroxide (H2O2) represents a method commonly used to generate cellular senescence in vitro. The objective of the present paper is to study H2O2-induced senescence patterns in three auditory cell lines (House Ear Institute-Organ of Corti 1, HEI-OC1; organ of Corti, OC-k3, and stria vascularis, SV-k1 cells) to elucidate the intrinsic mechanisms responsible for ARHL. The auditory cells were exposed to H2O2 at different concentrations and times. The results obtained show different responses of the hearing cells concerning cell growth, β-galactosidase activity, morphological changes, mitochondrial activation, levels of oxidative stress, and other markers of cell damage (Forkhead box O3a, FoxO3a, and 8-oxoguanine, 8-oxoG). Comparison between the responses of these auditory cells to H2O2 is a helpful method to evaluate the molecular mechanisms responsible for these auditory cells’ senescence. Furthermore, this in vitro model could help develop anti-senescent therapeutic strategies for the treatment of AHRL.


Antioxidants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1870
Author(s):  
Chen-Ju Chuang ◽  
Meilin Wang ◽  
Jui-Hsuan Yeh ◽  
Tzu-Chun Chen ◽  
Shang-Chun Tsou ◽  
...  

It is well known that age-related macular degeneration (AMD) is an irreversible neurodegenerative disease that can cause blindness in the elderly. Oxidative stress-induced retinal pigment epithelial (RPE) cell damage is a part of the pathogenesis of AMD. In this study, we evaluated the protective effect and mechanisms of alpha-mangostin (α-mangostin, α-MG) against NaIO3-induced reactive oxygen species (ROS)-dependent toxicity, which activates apoptosis in vivo and in vitro. MTT assay and flow cytometry demonstrated that the pretreatment of ARPE-19 cells with α-MG (0, 3.75, 7.5, and 15 μM) significantly increased cell viability and reduced apoptosis from NaIO3-induced oxidative stress in a concentration-dependent manner, which was achieved by the inhibition of Bax, cleaved PARP-1, cleaved caspase-3 protein expression, and enhancement of Bcl-2 protein. Furthermore, pre-incubation of ARPE-19 cells with α-MG markedly inhibited the intracellular ROS and extracellular H2O2 generation via blocking of the abnormal enzyme activities of superoxide dismutase (SOD), the downregulated levels of catalase (CAT), and the endogenous antioxidant, glutathione (GSH), which were regulated by decreasing PI3K-AKT-PGC-1α-STRT-3 signaling in ARPE-19 cells. In addition, our in vivo results indicated that α-MG improved retinal deformation and increased the thickness of both the outer nuclear layer and inner nuclear layer by inhibiting the expression of cleaved caspase-3 protein. Taken together, our results suggest that α-MG effectively protects human ARPE-19 cells from NaIO3-induced oxidative damage via antiapoptotic and antioxidant effects.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Antonella Tramutola ◽  
Fabio Di Domenico ◽  
Eugenio Barone ◽  
Marzia Perluigi ◽  
D. Allan Butterfield

Free radical-mediated damage to macromolecules and the resulting oxidative modification of different cellular components are a common feature of aging, and this process becomes much more pronounced in age-associated pathologies, including Alzheimer disease (AD). In particular, proteins are particularly sensitive to oxidative stress-induced damage and these irreversible modifications lead to the alteration of protein structure and function. In order to maintain cell homeostasis, these oxidized/damaged proteins have to be removed in order to prevent their toxic accumulation. It is generally accepted that the age-related accumulation of “aberrant” proteins results from both the increased occurrence of damage and the decreased efficiency of degradative systems. One of the most important cellular proteolytic systems responsible for the removal of oxidized proteins in the cytosol and in the nucleus is the proteasomal system. Several studies have demonstrated the impairment of the proteasome in AD thus suggesting a direct link between accumulation of oxidized/misfolded proteins and reduction of this clearance system. In this review we discuss the impairment of the proteasome system as a consequence of oxidative stress and how this contributes to AD neuropathology. Further, we focus the attention on the oxidative modifications of a key component of the ubiquitin-proteasome pathway, UCHL1, which lead to the impairment of its activity.


2007 ◽  
Vol 53 (4) ◽  
pp. 657-665 ◽  
Author(s):  
Minna A Korolainen ◽  
Tuula A Nyman ◽  
Paula Nyyssönen ◽  
E Samuel Hartikainen ◽  
Tuula Pirttilä

Abstract Background: Carbonylation is an irreversible oxidative modification of proteins that has been linked to various conditions of oxidative stress, aging, physiological disorders, and disease. Increased oxidative stress is thus also considered to play a role in the pathogenesis of age-related neurodegenerative disorders such as Alzheimer disease (AD). In addition, it has recently become evident that the response mechanisms to increased oxidative stress may depend on sex. Several oxidized carbonylated proteins have been identified in plasma and brain of AD patients by use of 2-dimensional oxyblotting. Methods: In this pilot study, we estimated the concentrations and carbonylation of the most abundant cerebrospinal fluid proteins in aging women and men, both AD patients suffering from mild dementia and individuals exhibiting no cognitive decline. Oxidized carbonylated proteins were analyzed with 2-dimensional multiplexed oxyblotting, mass spectrometry, and database searches. Results: Signals for β-trace, λ chain, and transthyretins were decreased in probable AD patients compared with controls. The only identified protein exhibiting an increased degree of carbonylation in AD patients was λ chain. The concentrations of proteins did not generally differ between men and women; however, vitamin D–binding protein, apolipoprotein A-I, and α-1-antitrypsin exhibited higher extents of carbonylation in men. Conclusions: None of the brain-specific proteins exhibited carbonylation changes in probable AD patients compared with age-matched neurological controls showing no cognitive decline. The carbonylation status of proteins differed between women and men. Two-dimensional multiplexed oxyblotting is applicable to study both the concentrations and carbonylation of cerebrospinal fluid proteins.


2002 ◽  
Vol 103 (s2002) ◽  
pp. 176S-178S ◽  
Author(s):  
Jan KAEHLER ◽  
Bjoern SILL ◽  
Ralf KOESTER ◽  
Clemens MITTMANN ◽  
Hans-Dieter ORZECHOWSKI ◽  
...  

A dysregulated metabolism of oxygen-derived free radicals, nitric oxide and endothelin-1(ET-1) in conditions such as hypercholesterolaemia or hypertension may promote the development of atherosclerosis. We therefore subjected cultured human umbilical vein endothelial cells and coronary artery smooth muscle cells to oxidative stress induced by xanthine oxidase or hydrogen peroxide and observed alterations in ET-1 metabolism. Incubation with oxygen-derived free radicals increased preproET-1 promoter activity, ET-1 mRNA synthesis and big ET-1 concentrations in both cell types. This interaction of oxidative stress and ET-1 expression may be relevant in atherogenic conditions such as hypercholesterolaemia and hypertension since our data indicate that oxidative stress further aggravates the injurious effects attributed to ET-1.


2021 ◽  
Vol 22 (16) ◽  
pp. 8990
Author(s):  
Diana Salnikova ◽  
Varvara Orekhova ◽  
Andrey Grechko ◽  
Antonina Starodubova ◽  
Evgeny Bezsonov ◽  
...  

Altered mitochondrial function is currently recognized as an important factor in atherosclerosis initiation and progression. Mitochondrial dysfunction can be caused by mitochondrial DNA (mtDNA) mutations, which can be inherited or spontaneously acquired in various organs and tissues, having more or less profound effects depending on the tissue energy status. Arterial wall cells are among the most vulnerable to mitochondrial dysfunction due to their barrier and metabolic functions. In atherosclerosis, mitochondria cause alteration of cellular metabolism and respiration and are known to produce excessive amounts of reactive oxygen species (ROS) resulting in oxidative stress. These processes are involved in vascular disease and chronic inflammation associated with atherosclerosis. Currently, the list of known mtDNA mutations associated with human pathologies is growing, and many of the identified mtDNA variants are being tested as disease markers. Alleviation of oxidative stress and inflammation appears to be promising for atherosclerosis treatment. In this review, we discuss the role of mitochondrial dysfunction in atherosclerosis development, focusing on the key cell types of the arterial wall involved in the pathological processes. Accumulation of mtDNA mutations in isolated arterial wall cells, such as endothelial cells, may contribute to the development of local inflammatory process that helps explaining the focal distribution of atherosclerotic plaques on the arterial wall surface. We also discuss antioxidant and anti-inflammatory approaches that can potentially reduce the impact of mitochondrial dysfunction.


Sign in / Sign up

Export Citation Format

Share Document