scholarly journals Methyl jasmonate reduces the inflammation and apoptosis of HK-2 cells induced by LPS by regulating the NF-κB pathway

2021 ◽  

Background: Methyl jasmonate is a bioactive oxylipid that participates in the defense-related mechanisms of plants. The anti-inflammatory and anti-oxidative capacities of methyl jasmonate against lipopolysaccharide (LPS) induced arthritis have been widely investigated. However, the role of methyl jasmonate in LPS-induced cell model of tubular-interstitial nephritis (TIN) has not been reported. Methods: LPS (5 µg/mL) was applied to treat human renal tubular epithelial cell line (HK-2) for the establishment of TIN cell model. LPS-induced HK-2 was incubated with 10 or 20 µM methyl jasmonate, cell viability and apoptosis were assessed by MTT and flow cytometry. ELISA and qRT-PCR were performed to determine the levels of interleukin (IL)-1 beta (IL-1β), IL-6, IL-8 and tumor necrosis factor-α (TNF-α). The downstream pathway was investigated by western blot. Results: LPS induced cytotoxicity in HK-2 cell accompanied by decrease of cell viability and increase of cell apoptosis. Methyl jasmonate dosage dependently enhanced the cell viability and reduced cell apoptosis to ameliorate the cytotoxicity. LPS also induced inflammatory response in HK-2 cell with increased IL-1β, IL-6, IL-8 and TNF-α. Methyl jasmonate attenuated LPS-induced inflammation in HK-2 cell. Protein expression of IκBα was down-regulated, p65 and IκBα phosphorylation were up-regulated in LPS-induced HK-2. Methyl jasmonate attenuated LPS-induced decrease of IκBα and increase of p65 and IκBα phosphorylation in HK-2 cell. Conclusion: Methyl jasmonate demonstrated anti-apoptotic and anti-inflammatory effects on LPS-induced HK-2 cell through suppression of NF-κB activation.

2021 ◽  

Background: Methyl jasmonate is a bioactive oxylipid that participates in the defense-related mechanisms of plants. The anti-inflammatory and anti-oxidative capacities of methyl jasmonate against lipopolysaccharide (LPS) induced arthritis have been widely investigated. However, the role of methyl jasmonate in LPS-induced cell model of tubular-interstitial nephritis (TIN) has not been reported. Methods: LPS (5 µg/mL) was applied to treat human renal tubular epithelial cell line (HK-2) for the establishment of TIN cell model. LPS-induced HK-2 was incubated with 10 or 20 µM methyl jasmonate, cell viability and apoptosis were assessed by MTT and flow cytometry. ELISA and qRT-PCR were performed to determine the levels of interleukin (IL)-1 beta (IL-1β), IL-6, IL-8 and tumor necrosis factor-α (TNF-α). The downstream pathway was investigated by western blot. Results: LPS induced cytotoxicity in HK-2 cell accompanied by decrease of cell viability and increase of cell apoptosis. Methyl jasmonate dosage dependently enhanced the cell viability and reduced cell apoptosis to ameliorate the cytotoxicity. LPS also induced inflammatory response in HK-2 cell with increased IL-1β, IL-6, IL-8 and TNF-α. Methyl jasmonate attenuated LPS-induced inflammation in HK-2 cell. Protein expression of IκBα was down-regulated, p65 and IκBα phosphorylation were up-regulated in LPS-induced HK-2. Methyl jasmonate attenuated LPS-induced decrease of IκBα and increase of p65 and IκBα phosphorylation in HK-2 cell. Conclusion: Methyl jasmonate demonstrated anti-apoptotic and anti-inflammatory effects on LPS-induced HK-2 cell through suppression of NF-κB activation.


Pharmacology ◽  
2019 ◽  
Vol 105 (1-2) ◽  
pp. 90-101
Author(s):  
Biwang Liu ◽  
Huan Zhao ◽  
Yonghui Wang ◽  
Huizhong Zhang ◽  
Yanmiao Ma

Background: Astragaloside IV has shown its promising effect on acute respiratory distress syndrome (ARDS). Objectives: We aim to explore whether astragaloside IV is effective for ARDS treatment in a lipopolysaccharides (LPS)-induced cell model and whether autophagy is involved in the therapeutic function of astragaloside IV. Methods: MLE-12 cells were induced by LPS to construct an ARDS model in vitro. Cell viability was estimated by cell counting kit-8 and cell apoptosis by flow cytometry. Lactate dehydrogenase (LDH), malondialdehyde (MDA) and superoxide dismutase (SOD) levels were measured by enzyme-linked immunosorbent assay kit. The expression of tumour necrosis factor (TNF)-α, interleukin (IL)-6, zonula occludens (ZO)-1, Beclin-1 and autophagy-related (atg) 5 mRNA was evaluated by quantitative PCR, and the expression of ZO-1, microtubule-associated proteins 1A/1B light chain 3B (LC3B) I and, LC3B II protein by Western blot. Results: LPS effectively inhibited cell viability and LC3B I expression and enhanced LC3B II, Beclin-1 and atg5 expressions in MLE-12 cells. In LPS-induced ARDS cell model, astragaloside IV up-regulated cell viability, SOD activity and ZO-1 and LC3B I expressions but down-regulated cell apoptosis, TNF-α, IL-6, LC3B II, Beclin-1 and atg5 expressions and LDH and MDA levels. 3-methyladenine promoted cell viability and ZO-1 expression, down-regulated Beclin-1 and atg5 expression, while Rapamycin (Rap) had an opposite effect. Astragaloside IV suppressed cell viability and ZO-1 expression after the Rap treatment. Conclusions: Astragaloside IV might suppress autophagy initiation directly or indirectly through suppressing the oxidative stress and inflammatory response, which further enhances the cell viability and tight junction and reduces apoptosis in LPS-stimulated pulmonary endothelial ARDS cell model, thus exerting its therapeutic function in ARDS.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12053
Author(s):  
Lin Yuan ◽  
Mengjie Li ◽  
Zhishuai Zhang ◽  
Wanli Li ◽  
Wei Jin ◽  
...  

Camostat mesilate (CM) possesses potential anti-viral and anti-inflammatory activities. However, it remains unknown whether CM is involved in lipopolysaccharide (LPS)-mediated inflammatory responses and cell injury. In this project, differentially expressed proteins (DEPs, fold change ≥ 1.2 or ≤ 0.83 and Q value ≤ 0.05) in response to LPS stimulation alone or in combination with CM were identified through tandem mass tags (TMT)/mass spectrometry (MS)-based proteomics analysis in DF-1 chicken embryo fibroblasts. The mRNA expression levels of filtered genes were determined by RT-qPCR assay. The results showed that CM alleviated the detrimental effect of LPS on cell viability and inhibited LPS-induced TNF-α and IL-6 secretions in DF-1 chicken embryo fibroblasts. A total of 141 DEPs that might be involved in mediating functions of both LPS and CM were identified by proteomics analysis in DF-1 chicken embryo fibroblasts. LPS inhibited milk fat globule EGF and factor V/VIII domain containing (MFGE8) expression and induced high mobility group nucleosome binding domain 1 (HMGN1) expression, while these effects were abrogated by CM in DF-1 chicken embryo fibroblasts. MFGE8 knockdown facilitated TNF-α and IL-6 secretions , reduced cell viability, stimulated cell apoptosis in DF-1 chicken embryo fibroblasts co-treated with LPS and CM. HMGN1 loss did not influence TNF-α and IL-6 secretions, cell viability, and cell apoptosis in DF-1 chicken embryo fibroblasts co-treated with LPS and CM. In conclusion, CM exerted anti-inflammatory and pro-survival activities by regulating MFGE8 in LPS-stimulated DF-1 chicken embryo fibroblasts, deepening our understanding of the roles and molecular basis of CM in protecting against Gram-negative bacteria.


Author(s):  
Gazanfar Ahmad ◽  
Reyaz Hassan ◽  
Neerupma Dhiman ◽  
Asif Ali

Background: Pentacyclic triterpenoids are a biologically active class of phytoconstituents with diverse pharmacological activity including anti-inflammatory action. Objective: In the current study, we isolated 3-Acetylmyricadiol, a pentacyclic triterpenoid, from the ethyl acetate bark-extract of Myrica esculenta and evaluated it for anti-inflammatory potential. Methods: The ethyl acetate bark-extract of the M. esculenta was subjected to column chromatography to isolate 3-Acetylmyricadiol. MTT assay was performed to check cell viability. The production of proinflammatory mediators like Nitric oxide, IL-6, TNF-α was observed after administration of 5, 10, 20 μM of 3-Acetylmyricadiol in LPS-activated Raw 246.7 macrophages by the reported methods. Results: MTT assay indicated more than 90% cell viability up to 20 μM of 3-Acetylmyricadiol. The administration of 3-Acetylmyricadiol inhibited the production of Nitric oxide, IL-6, TNF-α in a dose-dependent manner significantly in comparison to LPS treated cells. The maximum effect was observed at 20 μM of 3-Acetylmyricadiol which resulted in 52.37, 63.10, 55.37 % inhibition of Nitric oxide, IL-6, TNF-α respectively. Conclusion: Our study demonstrated the anti-inflammatory action of 3-Acetylmyricadiol and can serve as a potential candidate in the development of the clinically efficient anti-inflammatory molecule.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Reza Shirazinia ◽  
Ali Akbar Golabchifar ◽  
Vafa Baradaran Rahimi ◽  
Abbas Jamshidian ◽  
Alireza Samzadeh-Kermani ◽  
...  

Lead is one of the most common environmental contaminants in the Earth’s crust, which induces a wide range of humans biochemical changes. Previous studies showed that Opuntia dillenii (OD) fruit possesses several antioxidant and anti-inflammatory properties. The present study evaluates OD fruit hydroalcoholic extract (OHAE) hepatoprotective effects against lead acetate- (Pb-) induced toxicity in both animal and cellular models. Male rats were grouped as follows: control, Pb (25 mg/kg/d i.p.), and groups 3 and 4 received OHAE at 100 and 200 mg/kg/d + Pb (25 mg/kg/d i.p.), for ten days of the experiment. Thereafter, we evaluated the levels of alkaline phosphatase (ALP), alanine aminotransferase (ALT), and aspartate aminotransferase (AST), catalase (CAT) activity and malondialdehyde (MDA) in serum, and liver histopathology. Additionally, the cell study was also done using the HepG2 cell line for measuring the direct effects of the extract on cell viability, oxidative stress MDA, and glutathione (GSH) and inflammation tumor necrosis factor-α (TNF-α) following the Pb-induced cytotoxicity. Pb significantly increased the serum levels of ALT, AST, ALP, and MDA and liver histopathological scores but notably decreased CAT activity compared to the control group ( p < 0.001 for all cases). OHAE (100 and 200 mg/kg) significantly reduced the levels of serum liver enzyme activities and MDA as well as histopathological scores while it significantly increased CAT activity compared to the Pb group ( p < 0.001 –0.05 for all cases). OHAE (20, 40, and 80 μg/ml) concentration dependently and significantly reduced the levels of MDA and TNF-α, while it increased the levels of GSH and cell viability in comparison to the Pb group ( p < 0.001 –0.05 for all cases). These data suggest that OHAE may have hepatoprotective effects against Pb-induced liver toxicity both in vitro and in vivo by its antioxidant and anti-inflammatory activities.


Life ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 116
Author(s):  
Yu-Pin Chen ◽  
Yo-Lun Chu ◽  
Yang-Hwei Tsuang ◽  
Yueh Wu ◽  
Cheng-Yi Kuo ◽  
...  

Background: Adenine is a purine with a role in cellular respiration and protein synthesis. It is considered for its pharmacological potential. We investigated whether anti-inflammatory effect of adenine benefits on the proliferation and maturation of osteoblastic cells. Methods: Human osteoblast-like cells (MG-63) were cultured with adenine under control conditions or pre-treated with 10ng/mL of tumor necrosis factor-α (TNF-α) followed by adenine treatment. Cell viability was examined using dimethylthiazol diphenyltetrazolium bromide (MTT) assay. Expression of cytokines and osteogenic markers were analyzed using quantitative PCR (qPCR) and ELISA. Enzyme activity of alkaline phosphatase (ALP) and collagen content were measured. Results: TNF-α exposure led to a decreased viability of osteoblastic cells. Treatment with adenine suppressed TNF-α-induced elevation in IL-6 expression and nitrite oxide production in MG-63 cells. Adenine induced the osteoblast differentiation with increased transcript levels of collage and increased ALP enzyme activity. Conclusions: Adenine exerts anti-inflammatory activity in an inflammatory cell model. Adenine benefits osteoblast differentiation in normal and inflammatory experimental settings. Adenine has a potential for the use to treat inflammatory bone condition such as osteoporosis.


2019 ◽  
Vol 97 (Supplement_3) ◽  
pp. 211-212
Author(s):  
Hua Zhang ◽  
Yuhuan Chen ◽  
Lili Mats ◽  
Qianru Hui ◽  
Rong Tsao ◽  
...  

Abstract An impaired intestinal barrier function results in aggravating inflammatory response at a systemic scale, eventually leading to rising risk for systemic diseases (e.g., muscle myopathy and vascular disorders). In the present study, the impact of intake polyphenol-rich red osier dogwood extracts (RWE) on the inflammation of endothelial cells was exploited. A strong anti-inflammatory activity of RWE was found to suppress the expression of pro-inflammatory mediators (e.g., IL-8, TNF-α, IL-6, and ICAM) in the inflamed intestinal epithelial cell model. Furthermore, the intestinal transported RWE derived phenolic compounds was shown to protect the endothelial cells against both oxidative and inflammatory damages in a Caco-2/EA.hy926 co-culture cell model. Their protective activities in EA.hy926 was found to be strongly associated with intestinal absorption efficiency. The accumulation of transported rutin and unknown monoglyceride quercetin from RWE were identified across the Caco-2 BBe1 monolayer by HPLC up to 24 h. The highest concentration of transported rutin and monoglyceride quercetin derived from RWE were detected as 2.0 ± 0.22 µg/mL and 0.5 ± 0.08 µg/mL in the basolateral compartment after 12 h and 24 h of incubation, respectively. Profound anti-inflammatory effects of RWE derived polyphenols was observed to suppress pro-inflammatory mediator expression, including IL-8, TNF-α, IL-6, ICAM, VCAM and Cox2, in the TNF-α or oxidized low-density lipoprotein (oxLDL)-induced basolateral EA.hy926 cells (co-culture model). Moreover, we observed a significant inhibitory effect of the transported RWE on oxLDL-induced inflammation after 6 h incubation rather than 24 h, indicating the potential health benefits of RWE is determined by its bioavailability. Results of this study demonstrated that phenolic compounds derived from RWE could be delivered into the circulation system to mitigate inflammatory responses thereby being a promising dietary agent for preventing systemic diseases (e.g., cardiovascular diseases in humans and white stripping/woody meat in broiler chickens).


2008 ◽  
Vol 16 (1) ◽  
pp. 104-110 ◽  
Author(s):  
Xiaoping Chen ◽  
Barbara K. Yoza ◽  
Mohamed El Gazzar ◽  
Jean Y. Q. Hu ◽  
Sue L. Cousart ◽  
...  

ABSTRACT Transcription factors and chromatin structural modifiers induce clinically relevant epigenetic modifications of blood leukocytes during severe systemic inflammation (SSI) in humans and animals. These changes affect genes with distinct functions, as exemplified by the silencing of a set of acute proinflammatory genes and the sustained expression of a group of antimicrobial and anti-inflammatory genes. This paradigm is closely mimicked in the THP-1 human promonocyte cell model of lipopolysaccharide (LPS) endotoxin tolerance. We previously reported that LPS-induced de novo expression of RelB is required for generating tolerance to interleukin-1β (IL-1β) and tumor necrosis factor alpha (TNF-α) expression. RelB represses transcription by binding with heterochromatic protein 1 α (HP1α) to the proximal promoters of IL-1β and TNF-α. In contrast, we report herein that RelB is required for sustained expression of anti-inflammatory IκBα in LPS-tolerant THP-1 cells. RelB transcription activation requires binding to the IκBα proximal promoter along with NF-κB p50 and is associated with an apparent dimer exchange with p65. We also observed that RelB induced during human SSI binds to the IκBα proximal promoter of circulating leukocytes. We conclude that RelB functions as a dual transcription regulator during LPS tolerance and human SSI by activating and repressing innate immunity genes.


2021 ◽  
Vol 13 (3) ◽  
pp. 102-108
Author(s):  
Yilin Zhang ◽  
Guantai Ni ◽  
Hongying Yang

Plumbagin, a bioactive phytoconstituent, is isolated from the root of Plumbago zeylanica L. Plumbagin pos-sesses antidiabetic effect to mediate glucose homeostasis, wound healing and diabetic nephropathy. However, the involvement of plumbagin in gestational diabetes mellitus (GDM) has not been reported yet. Trophoblast cell line (HTR8/SVneo) was incubated with high glucose to establish cell model of GDM. Cell viability and proliferation were detected by MTT and EdU staining. Flow cytometry was used to investigate cell apoptosis. Cell viability of HTR8/SVneo was reduced by high glucose or incubation of plumbagin. Plumbagin restored reduced cell viability and proliferation of HTR8/SVneo induced by high glucose. Plumbagin attenuated high glucose-induced cell apoptosis in HTR8/SVneo cells through upregulation of Bcl-2 and down-regulation of Bax, cleaved caspase-3 and cleaved caspase-9. Protein expression of glucose transporter type 4 (GLUT-4), insulin receptor (INSR)-B and INSR substrate (IRS1) was decreased in high glucose-induced HTR8/SVneo but increased by plumbagin. The suppressive effects of high glucose on phosphorylation of AKT and mTOR in HTR8/SVneo were reversed by plumbagin. Plumbagin improved high glucose-induced cell apoptosis and insulin resistance of HTR8/SVneo through activation of AKT/mTOR pathway, suggesting that plumbagin might be used as a potential strategy for the prevention of GDM.


Sign in / Sign up

Export Citation Format

Share Document