scholarly journals SARS-COV-2 Vaccines Immunological Impact

Author(s):  
Hatem Tallima ◽  
Rashika El Ridi

The immune responses to SARS-CoV-2 are herein detailed to clarify the innate immunity protective effects in a large fraction of individuals exposed to the infection, and the drawbacks of the interference of the acquired immunity cytotoxic T cells and antibody-dependent natural killer cell-mediated cytotoxicity arms. Very precisely, the available vaccines based on full-length spike glycoprotein in a mRNA or DNA-based construct, or whole virus potently lead to generation of these immunologically damaging effectors, especially following exposure to the pathogen. Conversely, a vaccine exclusively based on spike glycoprotein subunit 1 in a protein form can protect against the life-threatening virus infection and never lead to adverse side effects.

Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3492
Author(s):  
Fu-Chen Huang

Salmonella infection remains one of the major public health problems in the world, with increasing resistance to antibiotics. The resolution is to explore the pathogenesis of the infection and search for alternative therapy other than antibiotics. Immune responses to Salmonella infection include innate and adaptive immunity. Flagellin or muramyl dipeptide from Salmonella, recognized by extracellular Toll-like receptors and intracellular nucleotide-binding oligomerization domain2, respectively, induce innate immunity involving intestinal epithelial cells, neutrophils, macrophages, dendric cells and lymphocytes, including natural killer (NK) and natural killer T (NKT) cells. The cytokines, mostly interleukins, produced by the cells involved in innate immunity, stimulate adaptive immunity involving T and B cells. The mucosal epithelium responds to intestinal pathogens through its secretion of inflammatory cytokines, chemokines, and antimicrobial peptides. Chemokines, such as IL-8 and IL-17, recruit neutrophils into the cecal mucosa to defend against the invasion of Salmonella, but induce excessive inflammation contributing to colitis. Some of the interleukins have anti-inflammatory effects, such as IL-10, while others have pro-inflammatory effects, such as IL-1β, IL-12/IL-23, IL-15, IL-18, and IL-22. Furthermore, some interleukins, such as IL-6 and IL-27, exhibit both pro- and anti-inflammatory functions and anti-microbial defenses. The majority of interleukins secreted by macrophages and lymphocytes contributes antimicrobial defense or protective effects, but IL-8 and IL-10 may promote systemic Salmonella infection. In this article, we review the interleukins involved in Salmonella infection in the literature.


2009 ◽  
Vol 22 (4) ◽  
pp. 535-551 ◽  
Author(s):  
Stacy J. Park ◽  
Borna Mehrad

SUMMARY All humans are continuously exposed to inhaled Aspergillus conidia, yet healthy hosts clear the organism without developing disease and without the development of antibody- or cell-mediated acquired immunity to this organism. This suggests that for most healthy humans, innate immunity is sufficient to clear the organism. A failure of these defenses results in a uniquely diverse set of illnesses caused by Aspergillus species, which includes diseases caused by the colonization of the respiratory tract, invasive infection, and hypersensitivity. A key concept in immune responses to Aspergillus species is that the susceptibilities of the host determine the morphological form, antigenic structure, and physical location of the fungus. In this review, we summarize the current literature on the multiple layers of innate defenses against Aspergillus species that dictate the outcome of this host-microbe interaction.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yi Yu ◽  
Alejandra Vargas Valderrama ◽  
Zhongchao Han ◽  
Georges Uzan ◽  
Sina Naserian ◽  
...  

Abstract Background Mesenchymal stem cells (MSCs) exhibit active abilities to suppress or modulate deleterious immune responses by various molecular mechanisms. These cells are the subject of major translational efforts as cellular therapies for immune-related diseases and transplantations. Plenty of preclinical studies and clinical trials employing MSCs have shown promising safety and efficacy outcomes and also shed light on the modifications in the frequency and function of regulatory T cells (T regs). Nevertheless, the mechanisms underlying these observations are not well known. Direct cell contact, soluble factor production, and turning antigen-presenting cells into tolerogenic phenotypes, have been proposed to be among possible mechanisms by which MSCs produce an immunomodulatory environment for T reg expansion and activity. We and others demonstrated that adult bone marrow (BM)-MSCs suppress adaptive immune responses directly by inhibiting the proliferation of CD4+ helper and CD8+ cytotoxic T cells but also indirectly through the induction of T regs. In parallel, we demonstrated that fetal liver (FL)-MSCs demonstrates much longer-lasting immunomodulatory properties compared to BM-MSCs, by inhibiting directly the proliferation and activation of CD4+ and CD8+ T cells. Therefore, we investigated if FL-MSCs exert their strong immunosuppressive effect also indirectly through induction of T regs. Methods MSCs were obtained from FL and adult BM and characterized according to their surface antigen expression, their multilineage differentiation, and their proliferation potential. Using different in vitro combinations, we performed co-cultures of FL- or BM-MSCs and murine CD3+CD25−T cells to investigate immunosuppressive effects of MSCs on T cells and to quantify their capacity to induce functional T regs. Results We demonstrated that although both types of MSC display similar cell surface phenotypic profile and differentiation capacity, FL-MSCs have significantly higher proliferative capacity and ability to suppress both CD4+ and CD8+ murine T cell proliferation and to modulate them towards less active phenotypes than adult BM-MSCs. Moreover, their substantial suppressive effect was associated with an outstanding increase of functional CD4+CD25+Foxp3+ T regs compared to BM-MSCs. Conclusions These results highlight the immunosuppressive activity of FL-MSCs on T cells and show for the first time that one of the main immunoregulatory mechanisms of FL-MSCs passes through active and functional T reg induction.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Cheng-Tao Jiang ◽  
Kai-Ge Chen ◽  
An Liu ◽  
Hua Huang ◽  
Ya-Nan Fan ◽  
...  

AbstractModulating effector immune cells via monoclonal antibodies (mAbs) and facilitating the co-engagement of T cells and tumor cells via chimeric antigen receptor- T cells or bispecific T cell-engaging antibodies are two typical cancer immunotherapy approaches. We speculated that immobilizing two types of mAbs against effector cells and tumor cells on a single nanoparticle could integrate the functions of these two approaches, as the engineered formulation (immunomodulating nano-adaptor, imNA) could potentially associate with both cells and bridge them together like an ‘adaptor’ while maintaining the immunomodulatory properties of the parental mAbs. However, existing mAbs-immobilization strategies mainly rely on a chemical reaction, a process that is rough and difficult to control. Here, we build up a versatile antibody immobilization platform by conjugating anti-IgG (Fc specific) antibody (αFc) onto the nanoparticle surface (αFc-NP), and confirm that αFc-NP could conveniently and efficiently immobilize two types of mAbs through Fc-specific noncovalent interactions to form imNAs. Finally, we validate the superiority of imNAs over the mixture of parental mAbs in T cell-, natural killer cell- and macrophage-mediated antitumor immune responses in multiple murine tumor models.


Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1720
Author(s):  
Kuo-Chieh Liao ◽  
Mariano A. Garcia-Blanco

The importance of transcriptional regulation of host genes in innate immunity against viral infection has been widely recognized. More recently, post-transcriptional regulatory mechanisms have gained appreciation as an additional and important layer of regulation to fine-tune host immune responses. Here, we review the functional significance of alternative splicing in innate immune responses to viral infection. We describe how several central components of the Type I and III interferon pathways encode spliced isoforms to regulate IFN activation and function. Additionally, the functional roles of splicing factors and modulators in antiviral immunity are discussed. Lastly, we discuss how cell death pathways are regulated by alternative splicing as well as the potential role of this regulation on host immunity and viral infection. Altogether, these studies highlight the importance of RNA splicing in regulating host–virus interactions and suggest a role in downregulating antiviral innate immunity; this may be critical to prevent pathological inflammation.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Alexandra J. Spencer ◽  
Paul F. McKay ◽  
Sandra Belij-Rammerstorfer ◽  
Marta Ulaszewska ◽  
Cameron D. Bissett ◽  
...  

AbstractSeveral vaccines have demonstrated efficacy against SARS-CoV-2 mediated disease, yet there is limited data on the immune response induced by heterologous vaccination regimens using alternate vaccine modalities. Here, we present a detailed description of the immune response, in mice, following vaccination with a self-amplifying RNA (saRNA) vaccine and an adenoviral vectored vaccine (ChAdOx1 nCoV-19/AZD1222) against SARS-CoV-2. We demonstrate that antibody responses are higher in two-dose heterologous vaccination regimens than single-dose regimens. Neutralising titres after heterologous prime-boost were at least comparable or higher than the titres measured after homologous prime boost vaccination with viral vectors. Importantly, the cellular immune response after a heterologous regimen is dominated by cytotoxic T cells and Th1+ CD4 T cells, which is superior to the response induced in homologous vaccination regimens in mice. These results underpin the need for clinical trials to investigate the immunogenicity of heterologous regimens with alternate vaccine technologies.


2019 ◽  
Vol 94 (5) ◽  
Author(s):  
Hongjuan You ◽  
Yingying Lin ◽  
Feng Lin ◽  
Mingyue Yang ◽  
Jiahui Li ◽  
...  

ABSTRACT The cGAS/STING-mediated DNA-sensing signaling pathway is crucial for interferon (IFN) production and host antiviral responses. Herpes simplex virus I (HSV-1) is a DNA virus that has evolved multiple strategies to evade host immune responses. Here, we demonstrate that the highly conserved β-catenin protein in the Wnt signaling pathway is an important factor to enhance the transcription of type I interferon (IFN-I) in the cGAS/STING signaling pathway, and the production of IFN-I mediated by β-catenin was antagonized by HSV-1 US3 protein via its kinase activity. Infection by US3-deficienct HSV-1 and its kinase-dead variants failed to downregulate IFN-I and IFN-stimulated gene (ISG) production induced by β-catenin. Consistent with this, absence of β-catenin enhanced the replication of US3-deficienct HSV-1, but not wild-type HSV-1. The underlying mechanism was the interaction of US3 with β-catenin and its hyperphosphorylation of β-catenin at Thr556 to block its nuclear translocation. For the first time, HSV-1 US3 has been shown to inhibit IFN-I production through hyperphosphorylation of β-catenin and to subvert host antiviral innate immunity. IMPORTANCE Although increasing evidence has demonstrated that HSV-1 subverts host immune responses and establishes lifelong latent infection, the molecular mechanisms by which HSV-1 interrupts antiviral innate immunity, especially the cGAS/STING-mediated cellular DNA-sensing signaling pathway, have not been fully explored. Here, we show that β-catenin promotes cGAS/STING-mediated activation of the IFN pathway, which is important for cellular innate immune responses and intrinsic resistance to DNA virus infection. The protein kinase US3 antagonizes the production of IFN by targeting β-catenin via its kinase activity. The findings in this study reveal a novel mechanism for HSV-1 to evade host antiviral immunity and add new knowledge to help in understanding the interaction between the host and HSV-1 infection.


2016 ◽  
Vol 29 (6) ◽  
pp. 447-457 ◽  
Author(s):  
Djamel Gully ◽  
Daniel Gargani ◽  
Katia Bonaldi ◽  
Cédric Grangeteau ◽  
Clémence Chaintreuil ◽  
...  

In response to the presence of compatible rhizobium bacteria, legumes form symbiotic organs called nodules on their roots. These nodules house nitrogen-fixing bacteroids that are a differentiated form of the rhizobium bacteria. In some legumes, the bacteroid differentiation comprises a dramatic cell enlargement, polyploidization, and other morphological changes. Here, we demonstrate that a peptidoglycan-modifying enzyme in Bradyrhizobium strains, a DD-carboxypeptidase that contains a peptidoglycan-binding SPOR domain, is essential for normal bacteroid differentiation in Aeschynomene species. The corresponding mutants formed bacteroids that are malformed and hypertrophied. However, in soybean, a plant that does not induce morphological differentiation of its symbiont, the mutation does not affect the bacteroids. Remarkably, the mutation also leads to necrosis in a large fraction of the Aeschynomene nodules, indicating that a normally formed peptidoglycan layer is essential for avoiding the induction of plant immune responses by the invading bacteria. In addition to exopolysaccharides, capsular polysaccharides, and lipopolysaccharides, whose role during symbiosis is well defined, our work demonstrates an essential role in symbiosis for yet another rhizobial envelope component, the peptidoglycan layer.


Blood ◽  
1994 ◽  
Vol 83 (1) ◽  
pp. 92-98 ◽  
Author(s):  
F Hirayama ◽  
N Katayama ◽  
S Neben ◽  
D Donaldson ◽  
EB Nickbarg ◽  
...  

We have investigated the effects of interleukin (IL)-12 (natural killer cell stimulatory factor/cytotoxic lymphocyte maturation factor) on the proliferation of murine myeloid and lymphohematopoietic progenitors in methylcellulose culture. In the presence of erythropoietin (Ep), IL-12 alone failed to support colony formation by mononuclear and enriched marrow cells of normal mice. Steel factor (SF) alone supported primarily formation of granulocyte/macrophage (GM) colony formation. However, the combination of the two cytokines yielded a significant number of multilineage colonies. When tested on marrow cells from 5- fluorouracil (5-FU)-treated mice, the combination of IL-12 and SF, but not the single factors, was effective in support of formation of various types of colonies. Approximately 25% of these colonies yielded pre-B-cell colonies when replated in secondary culture containing SF and IL-7, indicating that IL-12 can interact with SF in supporting the development of primitive lymphohematopoietic progenitors. These results demonstrate that IL-12, a cytokine believed to be involved in the development of cell-mediated immune responses, has a wider range of activity, including committed myeloid and multipotent lymphohematopoietic progenitors.


2021 ◽  
Vol 12 ◽  
Author(s):  
Hyeogsun Kwon ◽  
David R. Hall ◽  
Ryan C. Smith

Lipid-derived signaling molecules known as eicosanoids have integral roles in mediating immune and inflammatory processes across metazoans. This includes the function of prostaglandins and their cognate G protein-coupled receptors (GPCRs) to employ their immunological actions. In insects, prostaglandins have been implicated in the regulation of both cellular and humoral immune responses, yet in arthropods of medical importance, studies have been limited. Here, we describe a prostaglandin E2 receptor (AgPGE2R) in the mosquito Anopheles gambiae and demonstrate that its expression is most abundant in oenocytoid immune cell populations. Through the administration of prostaglandin E2 (PGE2) and AgPGE2R-silencing, we demonstrate that prostaglandin E2 signaling regulates a subset of prophenoloxidases (PPOs) and antimicrobial peptides (AMPs) that are strongly expressed in populations of oenocytoids. We demonstrate that PGE2 signaling via the AgPGE2R significantly limits both bacterial replication and Plasmodium oocyst survival. Additional experiments establish that PGE2 treatment increases phenoloxidase (PO) activity through the increased expression of PPO1 and PPO3, genes essential to anti-Plasmodium immune responses that promote oocyst killing. We also provide evidence that the mechanisms of PGE2 signaling are concentration-dependent, where high concentrations of PGE2 promote oenocytoid lysis, negating the protective effects of lower concentrations of PGE2 on anti-Plasmodium immunity. Taken together, our results provide new insights into the role of PGE2 signaling on immune cell function and its contributions to mosquito innate immunity that promote pathogen killing.


Sign in / Sign up

Export Citation Format

Share Document