scholarly journals Kinetic Modeling and Algorithm of Three-Component Reaction Network

Author(s):  
Yanping Zhang ◽  
Li Xing ◽  
Huan Liu ◽  
Pingping Huang ◽  
Chunjin Wei ◽  
...  

The definite solutions of the differential equations from a three-component triangle reaction network have been obtained by utilizing the concept of virtual component concentration and some mathematical techniques. The kinetic model forming from the above definite solutions reveals that the overall reaction rate will be affected by the distribution entropy of the rate coefficients. The improved eigenvector method including a basic equation, algorithm, and criterion has been proposed for calculating the rate coefficients from experimental concentration curves.

2016 ◽  
Vol 16 (4) ◽  
pp. 3431-3435 ◽  
Author(s):  
Yutaka Tsujiuchi ◽  
Hiroshi Masumoto ◽  
Takashi Goto

To elucidate the time evolution of photo reaction of bacteriorhodopsin in glycerol mixed purple membrane at around 196 K under irradiation by red light, a kinetic model was constructed. The change of absorption with irradiation at times of 560 nm and 412 nm was analyzed for the purpose of determining reaction rates of photo reaction of bacteriorhodopsin and its product M intermediate. In this study it is shown that reaction rates of conversion from bacteriorhodopsin to the M intermediate can be explained by a set of linear differential equations. This model analysis concludes that bacteriorhodopsin in which constitutes a trimer unit with other two bacteriorhodopsin molecules changes into M intermediates in the 1.73 of reaction rate, in the initial step, and according to the number of M intermediate in a trimer unit, from three to one, the reaction rate of bacteriorhodopsin into M intermediates smaller as 1.73, 0.80, 0.19 which caused by influence of inter-molecular interaction between bacteriorhodopsin.


2021 ◽  
Vol 46 ◽  
pp. 146867832095686
Author(s):  
Mohammad Zakarianezhad ◽  
Sayyed Mostafa Habibi-Khorassani ◽  
Batoul Makiabadi ◽  
Elham Zeydabadi

The reaction kinetics among isoquinoline, dimethyl acetylenedicarboxylate, and indole (as NH-acid) were investigated using ultraviolet (UV) spectrophotometry. The reaction rate equation was obtained, the dependence of the reaction rate on different reactants was determined, and the overall rate constant ( kov) was calculated. By studying the effects of solvent, temperature, and concentration on the reaction rate, some useful information was obtained. A logical mechanism consistent with the experimental observations was proposed. Also, comprehensive theoretical studies were performed to evaluate the potential energy surfaces of all structures that participated in the reaction mechanism. Finally, the proposed mechanism was confirmed by the obtained results and the probable and logical reaction paths and also a correct product configuration were suggested based on the theoretical results.


Processes ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1260
Author(s):  
Stefanie Duvigneau ◽  
Robert Dürr ◽  
Jessica Behrens ◽  
Achim Kienle

Biopolymers are a promising alternative to petroleum-based plastic raw materials. They are bio-based, non-toxic and degradable under environmental conditions. In addition to the homopolymer poly(3-hydroxybutyrate) (PHB), there are a number of co-polymers that have a broad range of applications and are easier to process in comparison to PHB. The most prominent representative from this group of bio-copolymers is poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV). In this article, we show a new kinetic model that describes the PHBV production from fructose and propionic acid in Cupriavidus necator (C. necator). The developed model is used to analyze the effects of process parameter variations such as the CO2 amount in the exhaust gas and the feed rate. The presented model is a valuable tool to improve the microbial PHBV production process. Due to the coupling of CO2 online measurements in the exhaust gas to the biomass production, the model has the potential to predict the composition and the current yield of PHBV in the ongoing process.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 955
Author(s):  
Alamir Elsayed ◽  
Mohamed El-Beltagy ◽  
Amnah Al-Juhani ◽  
Shorooq Al-Qahtani

The point kinetic model is a system of differential equations that enables analysis of reactor dynamics without the need to solve coupled space-time system of partial differential equations (PDEs). The random variations, especially during the startup and shutdown, may become severe and hence should be accounted for in the reactor model. There are two well-known stochastic models for the point reactor that can be used to estimate the mean and variance of the neutron and precursor populations. In this paper, we reintroduce a new stochastic model for the point reactor, which we named the Langevin point kinetic model (LPK). The new LPK model combines the advantages, accuracy, and efficiency of the available models. The derivation of the LPK model is outlined in detail, and many test cases are analyzed to investigate the new model compared with the results in the literature.


1989 ◽  
Vol 67 (5) ◽  
pp. 857-861 ◽  
Author(s):  
Shin-Ichi Miyamoto ◽  
Tetsuo Sakka ◽  
Matae Iwasaki

The reaction rate of hydrogen isotope exchange between D2 and H2O catalyzed by platinum plate is studied. The exchange reaction is described with the kinetic model which is the modification of that for the exchange reaction catalyzed by alumina-supported platinum catalyst. For the comparison of experimental results with this model relative amount of the number of sites for hydrogen adsorption was estimated from the initial rate of hydrogen isotope exchange between H2 and D2 on the same surface. The results show that the kinetic model is applicable for the plate catalyst if the number of the sites for hydrogen absorption, which is very sensitive to the surface state of the catalyst, was estimated not from the macroscopic surface area but from our scheme. Keywords: hydrogen isotope exchange reaction, platinum plate as catalyst.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Sobia Akbar ◽  
Azad Hussain

Purpose. The flow of nonviscous Casson fluid is examined in this study over an oscillating surface. The model of the fluid flow has been inspected in the presence of oblique stagnation point flow. The scrutiny is subsumed for the Riga plate by considering the effects of magnetohydrodynamics. The Riga plate is considered as an electromagnetic lever which carries eternal magnets and a stretching line up of alternating electrodes coupled on a plane surface. We have considered nonboundary layer two-dimensional incompressible flow of the fluid. The fluid flow model is analyzed in the fixed frame of reference. Motivation. The motivation of achieving more suitable results has always been a quest of life for scientists; the capability of determining the boundary layer of flow on aircraft which either stays laminar or turns turbulent has encouraged the researcher to study compressible flow in depth. The compressible fluid with boundary layer flow has been utilized by numerous researchers to reduce skin friction and enhance thermal and convectional heat exchange. Design/Approach/Methodology. The attained partial differential equations will be critically inspected by using suitable similarity transformation to transform these flows thrived equations into higher nonlinear ordinary differential equations (ODE). Then, these equations of motion are intercepted by mathematical techniques such as the bvp4c method in Maple and Matlab. The graphical and tabular representation of different parameters is also given. Findings. The behavior of β and modified Hartmann number M increases by positively increasing the values of both parameters for F η , while ω decreases with increasing the values of ω for F η . The graph of β shows upward behavior for distinct values for both G η and G ′ η for velocity portray. Prandtl number and β for the temperature profile of θ η and θ 1 η goes downward with increasing parameters.


Sign in / Sign up

Export Citation Format

Share Document