scholarly journals Enhancing crop productivity by CRISPR-mediated genetic improvement of root architecture: a focus on phytohormones

Author(s):  
Nikola Kořínková ◽  
Irene Maria Fontana ◽  
Thu Nguyen ◽  
Pouneh Pouramini ◽  
Véronique Bergougnoux ◽  
...  

Food security is one of the main topics of today’s agriculture especially facing challenging environmental conditions. As most humankind has a daily intake of cereal grains, current breeding programs focus on these crop plants. Within the breeders’ toolbox, customised endonucleases became included after this universal application had been demonstrated. Due to technological restrictions, the main focus was on aboveground plant organs, while the essential belowground has been given only limited attention. In the present review, we summarise the knowledge on the root system architecture in cereals, the importance of phytohormones in this physiological process, and the molecular mechanisms involved. The review summarises how the use of the CRISPR methodology can improve the root system architecture to enhance crop production genetically. Finally, future research directions involving all this knowledge and technical advances are suggested.

2020 ◽  
Vol 67 (1-2) ◽  
pp. 98-109
Author(s):  
Chen Lin ◽  
Margret Sauter

Drought and flooding are environmental extremes and major threats to crop production. Water uptake is achieved by plant roots which have to explore new soil spaces to alleviate water deficit during drought or to cope with water excess during flooding. Adaptation of the root system architecture helps plants cope with such extreme conditions and is crucial for plant health and survival. While for dicot plants the well studied model plant Arabidopsis thaliana has provided insight into the genetic and molecular regulation of the root system, less information is available for monocot species, which include the agronomically important cereal crops. Rice (Oryza sativa L.) is a semi-aquatic monocot plant that develops strong tolerance to flooding. Flooding tolerance of rice is closely linked to its adaptive root system. The functional root system of rice is mainly composed of crown roots and is shifted to nodal adventitious roots during flooding which allows rice to maintain oxygen supply to the roots and to survive longer periods of partial submergence as compared with other crops. Likewise, a number of drought-tolerance traits of rice are the result of an altered root system architecture. Hence, the structure of the root system adapts to, both, flooding and drought. Understanding the regulatory mechanisms that control root system adaptation to extreme environments is a key task for scientists to accelerate the breeding efforts for stress-tolerant crops. This review summarizes recently identified genes and molecular mechanisms that regulate root system architecture in rice in response to drought and flooding.


2021 ◽  
Author(s):  
Pankaj K Verma ◽  
Shikha Verma ◽  
Nalini Pandey

Abstract BackgroundIn order to feed expanding population, new crop varieties were generated which significantly contribute to world food security. However, the growth of these improved plants varieties relied primarily on synthetic fertilizers, which negatively affect the environment as well as human health. Plants adapt to adverse environmental changes by adopting root systems through architectural changes at the root-type and tissue-specific changes and nutrient uptake efficiency. ScopePlants adapt and operate distinct pathways at various stages of development in order to optimally establish their root systems, such as change in the expression profile of genes, changes in phytohormone level and microbiome induced Root System Architecture (RSA) modification. Many scientific studies have been carried out to understand plant response to microbial colonization and how microbes involved in RSA improvement through phytohormone level and transcriptomic changes.ConclusionIn this review, we spotlight the impact of genes, phytohormones and root microbiota on RSA and provide specific, critical new insights that have been resulted from recent studies on rice root as a model. First, we discuss new insights into the genetic regulation of RSA. Next, hormonal regulation of root architecture and the impact of phytohormones in crown root and root branching is discussed. Finally, we discussed the impact of root microbiota in RSA modification and summarized the current knowledge about the biochemical and central molecular mechanisms involved.


2020 ◽  
Vol 71 (15) ◽  
pp. 4393-4404 ◽  
Author(s):  
Zhongtao Jia ◽  
Nicolaus von Wirén

Abstract Among all essential mineral elements, nitrogen (N) is required in the largest amounts and thus is often a limiting factor for plant growth. N is taken up by plant roots in the form of water-soluble nitrate, ammonium, and, depending on abundance, low-molecular weight organic N. In soils, the availability and composition of these N forms can vary over space and time, which exposes roots to various local N signals that regulate root system architecture in combination with systemic signals reflecting the N nutritional status of the shoot. Uncovering the molecular mechanisms underlying N-dependent signaling provides great potential to optimize root system architecture for the sake of higher N uptake efficiency in crop breeding. In this review, we summarize prominent signaling mechanisms and their underlying molecular players that derive from external N forms or the internal N nutritional status and modulate root development including root hair formation and gravitropism. We also compare the current state of knowledge of these pathways between Arabidopsis and graminaceous plant species.


2021 ◽  
Author(s):  
Shree Pariyar ◽  
Kerstin A Nagel ◽  
Jonas Lentz ◽  
Anna Galinski ◽  
Jens Wilhelm ◽  
...  

Root system architecture (RSA) is a target for breeding because of the interest to develop crops with roots that use nutrients and water more effectively. Breeding for RSA requires phenotypic diversity in populations amenable to QTL identification to provide markers for large breeding programs. This study examined the variation for root traits across the parents of two multi-parent advanced generation inter-cross (MAGIC) wheat populations from NIAB and CSIRO for 16 days in an upgraded version of the non-invasive, germination paper-based phenotyping platform, GrowScreen-PaGe. Across all parents, total root length varied up to 1.90 fold, root biomass 2.25 fold and seminal root angle 1.16 fold. The CSIRO parents grew faster, exhibited slightly wider seminal root angle and produced larger root systems compared to NIAB parents. Lateral root lengths, leaf lengths and biomass contrasted most between fastest (Robigus - NIAB and AC Barrie - CSIRO) and slowest growing parents (Rialto - NIAB and G204 Xiaoyan54 - CSIRO). Lengths of lateral and total root, and leaf number and length had moderate to high heritability (0.30-0.67) and repeatability. Lengths of lateral roots and leaves are good targets for enhancing wheat crop establishment, a critical stage for crop productivity.


2020 ◽  
Vol 21 (17) ◽  
pp. 5955 ◽  
Author(s):  
Guoqiang Huang ◽  
Dabing Zhang

Phosphate is an essential macro-element for plant growth accumulated in the topsoil. The improvement of phosphate uptake efficiency via manually manipulating root system architecture is of vital agronomic importance. This review discusses the molecular mechanisms of root patterning in response to external phosphate availability, which could be applied on the alleviation of phosphate-starvation stress. During the long time evolution, plants have formed sophisticated mechanisms to adapt to environmental phosphate conditions. In terms of root systems, plants would adjust their root system architecture via the regulation of the length of primary root, the length/density of lateral root and root hair and crown root growth angle to cope with different phosphate conditions. Finally, plants develop shallow or deep root system in low or high phosphate conditions, respectively. The plasticity of root system architecture responds to the local phosphate concentrations and this response was regulated by actin filaments, post-translational modification and phytohormones such as auxin, ethylene and cytokinin. This review summarizes the recent progress of adaptive response to external phosphate with focus on integrated physiological, cellular and molecular signaling transduction in rice and Arabidopsis.


Agronomy ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2452
Author(s):  
Shree R. Pariyar ◽  
Kerstin A. Nagel ◽  
Jonas Lentz ◽  
Anna Galinski ◽  
Jens Wilhelm ◽  
...  

Root system architecture (RSA) is a target for breeding crops with effective nutrient and water use. Breeding can use populations designed to map quantitative trait loci (QTL). Here we non-invasively phenotype roots and leaves of the 16 foundation parents of two multi-parent advanced generation inter-cross (MAGIC) populations, covering diversity in spring (CSIRO MAGIC) and winter (NIAB MAGIC) wheats. RSA components varied after 16 days in the upgraded, paper-based imaging platform, GrowScreen-PaGe: lateral root length 2.2 fold; total root length, 1.9 fold; and seminal root angle 1.2 fold. RSA components total and lateral root length had the highest root heritabilities (H2) (H2 = 0.4 for CSIRO and NIAB parents) and good repeatability (r = 0.7) in the GrowScreen-PaGe. These can be combined with leaf length (H2 = 0.8 CSIRO; 0.7 NIAB) and number (H2 = 0.6 CSIRO; 0.7 NIAB) to identify root and shoot QTL to breed for wheats with vigorous RSA and shoot growth at establishment, a critical phase for crop productivity. Time resolved phenotyping of MAGIC wheats also revealed parents to cross in future for growth rate traits (fastest: Robigus–NIAB and AC Barrie–CSIRO; slowest Rialto–NIAB and G204 Xiaoyan54–CSIRO) and root: shoot allocation traits (fast growers grew roots, notably laterals, quicker than leaves, compared to slow growers).


2020 ◽  
Vol 11 ◽  
Author(s):  
Waldiodio Seck ◽  
Davoud Torkamaneh ◽  
François Belzile

Increasing the understanding genetic basis of the variability in root system architecture (RSA) is essential to improve resource-use efficiency in agriculture systems and to develop climate-resilient crop cultivars. Roots being underground, their direct observation and detailed characterization are challenging. Here, were characterized twelve RSA-related traits in a panel of 137 early maturing soybean lines (Canadian soybean core collection) using rhizoboxes and two-dimensional imaging. Significant phenotypic variation (P < 0.001) was observed among these lines for different RSA-related traits. This panel was genotyped with 2.18 million genome-wide single-nucleotide polymorphisms (SNPs) using a combination of genotyping-by-sequencing and whole-genome sequencing. A total of 10 quantitative trait locus (QTL) regions were detected for root total length and primary root diameter through a comprehensive genome-wide association study. These QTL regions explained from 15 to 25% of the phenotypic variation and contained two putative candidate genes with homology to genes previously reported to play a role in RSA in other species. These genes can serve to accelerate future efforts aimed to dissect genetic architecture of RSA and breed more resilient varieties.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Admas Alemu ◽  
Tileye Feyissa ◽  
Marco Maccaferri ◽  
Giuseppe Sciara ◽  
Roberto Tuberosa ◽  
...  

Abstract Background Genetic improvement of root system architecture is essential to improve water and nutrient use efficiency of crops or to boost their productivity under stress or non-optimal soil conditions. One hundred ninety-two Ethiopian durum wheat accessions comprising 167 historical landraces and 25 modern cultivars were assembled for GWAS analysis to identify QTLs for root system architecture (RSA) traits and genotyped with a high-density 90 K wheat SNP array by Illumina. Results Using a non-roll, paper-based root phenotyping platform, a total of 2880 seedlings and 14,947 seminal roots were measured at the three-leaf stage to collect data for total root length (TRL), total root number (TRN), root growth angle (RGA), average root length (ARL), bulk root dry weight (RDW), individual root dry weight (IRW), bulk shoot dry weight (SDW), presence of six seminal roots per seedling (RT6) and root shoot ratio (RSR). Analysis of variance revealed highly significant differences between accessions for all RSA traits. Four major (− log10P ≥ 4) and 34 nominal (− log10P ≥ 3) QTLs were identified and grouped in 16 RSA QTL clusters across chromosomes. A higher number of significant RSA QTL were identified on chromosome 4B particularly for root vigor traits (root length, number and/or weight). Conclusions After projecting the identified QTLs on to a high-density tetraploid consensus map along with previously reported RSA QTL in both durum and bread wheat, fourteen nominal QTLs were found to be novel and could potentially be used to tailor RSA in elite lines. The major RGA QTLs on chromosome 6AL detected in the current study and reported in previous studies is a good candidate for cloning the causative underlining sequence and identifying the beneficial haplotypes able to positively affect yield under water- or nutrient-limited conditions.


Sign in / Sign up

Export Citation Format

Share Document