scholarly journals Effects of pretreatments on drying of Turkey berry in fluidized bed dryer

Author(s):  
R. Barathiraja ◽  
P. Thirumal ◽  
G. Saraswathy ◽  
I. Rahamathullah

The influence of pre-treatment methods like physical, chemical, combined physical, and hybrid treatments on the Turkey berry fruits to enhance the water diffusion during drying was assessed due to the removal of a waxy layer on the peel. Pre-treated and untreated samples were dried at 70?C and 4 m/s of air flow in a fluidized bed dryer. Fruits pre-treated with combined abrasion and blanching have the lowest drying time, and favorable Vitamin-C content retention of 36%. The highest drying rate of 0.396 kg water/kg db min?1, maximum effective moisture diffusivity of 6.002 x 10-10 m2/s, and volumetric shrinkage ratio of 0.68 were obtained for fruits which undergone combined physical pre-treatment along with drying. The maximum change in color ?E = 14.75 and Chroma ?C = - 10.53 were obtained for the un-treated samples.

Author(s):  
Nhu Bich Ma ◽  
Thanh Thi Ha Le ◽  
Ngoc Lieu Le

Drying characteristics of Thai basil (Ocimum basilicum var. thyrsiflorum) leaves during hot-air drying process at different air temperatures with and without blanching pre-treatment were in-depth investigated. The increase in drying rate and decrease in drying time were observed at elevated temperatures. Blanching further reduced the drying time by approximately 19–45%, indicating to potentially reduce energy consumption of drying. The Midilli et al’s model demonstrated the best fitting to describe the process. The effective moisture diffusivity was computed as 0.21–1.55×10–10 m2s–1. The lower activation energy of water removal during drying for blanched leaves indicated that blanching had more energy efficiency at lower temperatures. Blanching also improved rehydration capacity of dried leaves. Microstructural analysis revealed that blanching caused the collapse of the cellular structure and shrinkage and hence reduced the resistance of moisture removal leading to a higher drying rate. The findings in this work prove that blanching can be a potential approach to save consumed energy, reduce drying time, and hence potentially preserve beneficial properties of bioactive compounds in agricultural plants.


2021 ◽  
Vol 29 (3) ◽  
Author(s):  
Nur Tantiyani Ali Othman ◽  
Ivan Adler Harry

Sago is an essential source of starch for some regions in the third and developing world. However, the sago processing industry has been producing a large amount of sago waste, and the untreated waste is usually disposed to the nearest river. It not only leads to the environmental problem, but it is illegal under the Environmental Quality Act 1974. Since the sago waste still has high starch content, which is 58%, it can be converted to high value-added products such as poultry feed. However, before being converted to other products, the sago must be dried to remove the moisture content to prevent any bacteria growth and ensure safety health issues have been observed. Recently, drying of sago bagasse using a fluidized bed dryer (FBD) has gained attention since the dry rate of the material is considerably faster compared to other methods. Due to that reason, the drying of the sago bagasse in the FBD is studied using computational fluid dynamic as it can be executed in a short period of time compared to the experimental approach. The FBD model was developed using ANSYS© Fluent academic version 19.2. The effect of the hot air feed temperature; T=50, 60, 70, and 80°C and velocity of hot air feed; v=1-4 m/s on the sago’s behavior and performance of fluidization profile were studied. The simulation results showed that the high temperature and air feed velocity would result in a rapid drying rate. Besides, the optimum drying rate was at T=60°C with the v=4 m/s as these conditions give a shorter drying time to achieve of final 10% moisture content. It also has the added advantages of reducing the power energy and cost supply. These optimal conditions are very crucial and should be consider as the dried sago bagasse tend to be retrograded when a higher temperature is applied.


REAKTOR ◽  
2011 ◽  
Vol 13 (3) ◽  
pp. 155 ◽  
Author(s):  
Abadi Jading ◽  
Eduard Tethool ◽  
Paulus Payung ◽  
Sarman Gultom

PHYSICOCHEMICAL CHARACTERISTICS OF SAGO STARCH OBTAINED FROM FLUIDIZED BED DRYING USING SOLAR AND BIOMASS POWERED CROSS FLOW FLUIDIZED BED DRYER. The research aim is to study the comparative quality of sago starch drying results using cross flow fluidized bed dryer powered by solar and biomass in conventional drying, particularly the chemical composition and physicochemical characteristics. This research was conducted through a drying phase of wet sago starch using a cross flow fluidized bed dryer, and drying in conventional as well as dried sago starch quality testing results are drying. The results of this study indicate that dry sago starch which has been drained by means of cross flow fluidized bed dryer has a chemical composition that does not vary much with starch which is dried by conventional drying, so that the dried sago starch produced by the dryer is very good. On the other hand the use of dryers is the more correct because the physicochemical properties of sago starch using a low drying temperature and drying time is short. Tujuan penelitian ini adalah mempelajari perbandingan kualitas pati sagu hasil pengeringan menggunakan alat pengering cross flow fluidized bed bertenaga surya dan biomassa dengan pengeringan secara konvensional, khususnya komposisi kimia dan karakteristik fisikokimia. Penelitian ini dilakukan melalui beberapa tahapan yaitu pengeringan pati sagu basah menggunakan alat pengering cross flow fluidized bed, pengeringan secara konvensional serta pengujian kualitas pati sagu kering hasil pengeringan. Hasil dari penelitian ini menunjukkan bahwa pati sagu kering yang telah dikeringkan dengan alat pengering cross flow fluidized bed memiliki komposisi kimia yang tidak berbeda jauh dengan pati yang dikeringkan dengan cara pengeringan secara konvensional, sehingga pati sagu kering yang dihasilkan oleh alat pengering tersebut sangat baik. Di sisi lain penggunaan alat pengering ini semakin memperbaiki sifat fisikokimia pati sagu sebab menggunakan suhu pengeringan yang rendah dan waktu pengeringan yang singkat.   Kata Kunci: pengering unggun terfluidakan; fisikokimia; pati sagu


2016 ◽  
Vol 11 (1) ◽  
pp. 1-11 ◽  
Author(s):  
Iman Golpour ◽  
Moein Zarrin Nejad ◽  
Reza Amiri Chayjan ◽  
Ali Mohammad Nikbakht ◽  
Raquel P. F. Guiné ◽  
...  

2012 ◽  
Vol 10 (1) ◽  
pp. 87-97 ◽  
Author(s):  
M. S. Islam ◽  
M. A. Haque ◽  
M. N. Islam

The present study quantifies the drying kinetics of green banana during mechanical dehydration. The effect of loading density (sample thickness) and the temperature on the drying rate constant and drying time were investigated and quantified. Drying rate increased with increasing temperature but decreased with increase in loading density. The values of exponent ‘n’ of the two parameters power law model describing the drying rate constant (as a function of thickness) were less than 2 which indicated the presence of significant external resistance to mass transfer despite the dominance of internal mass transfer resistance.  Investigation with three drying air temperatures (55, 60 and 65oC) at constant air velocity (0.6 m/sec) resulted that the increase in drying air temperature increased the drying process.  The moisture diffusivity values were 1.25×10-10, 1.67×10-10 and 2.19×10-10 m2/sec at 55, 60 and 65oC respectively. The activation energy (Ea) indicating the temperature dependence of the diffusivity was 51.21 KJ/mole obtained using Arrhenius model. Mixing of green banana flour in the potato chips formulation enhanced the fiber and mineral content in the product.DOI: http://dx.doi.org/10.3329/agric.v10i1.11069The Agriculturists 2012; 10(1): 87-97


Author(s):  
Monica Premi ◽  
Harish Sharma ◽  
Ashutosh Upadhyay

Abstract The present study examines the effect of air velocity on drying kinetics of the drumstick leaves in a forced convective dryer. The drumstick leaves were dried in the temperature range of 50–800 C, at different air velocity (Dv) of 0.5 and 1.3 m/s. The results indicated that drying temperature and air velocity are the factors in controlling the drying rate. Experimental data obtained for the samples for color, drying rate and drying time proved that air velocity of 1.3 m/s yielded the product superior in terms of both quality and energy efficiency as compared to the samples at 0.5 m/s. Activation energy for drumstick leaves dried with air velocity, 0.5 and 1.3 m/s was 12.50 and 32.74 kJ/mol respectively. The activation energy relates similarly with the effective moisture diffusivity which also increased with increase in air velocity and temperature.


2021 ◽  
Vol 21 (3) ◽  
pp. 170-182
Author(s):  
Russul A. Kadhim ◽  
Ekhlas M. Fayyadh ◽  
Sadeq H. Bakhy

This study represents an attempt to reduce the drying time of wet grain wheat of the fluidized bed dryer (FBD), using straight blades, and debates the effect of stirrer on the whole drying time at different static bed heights. Experiments for FBD were conducted at the low velocity of air supply (1.45 cm/s) with moisture content for grain wheat 12% and ambient temperature of 37°C for each static bed height (9, 12, and 15 cm). FBD was made from a glass cylindrical column with inside diameter 4.6 cm, outside diameter (5.2 cm) and length (116 cm). The results showed an enhancement of (12- 20.5%) in the total drying time for bed height (9 and 15) cm, respectively. Also, increasing bed height from 9 cm to 15 cm possesses no influence on the equilibrium content of moisture in both techniques of drying either stirred fluidized bed or conventional fluidized bed.  


2017 ◽  
Vol 2 (6) ◽  
pp. 430 ◽  
Author(s):  
Suherman Suherman ◽  
Mohammad Djaeni ◽  
Dyah Hesti Wardhani ◽  
Andri Cahyo Kumoro

The objective of this research is to develop the industrial-scale fluid bed dryer for paddy by scale-up of lab-scale experimental data. The developed dryer was conducted by simulation using a two phase model. Firstly, the experimental works by using lab-scale batch fluid bed dryer, was conducted to determine the drying curve of paddy (Xin 0.32 kg/kg dry base). In the experimental works,the inlet air temperature was varied (°C): 40; 50; 60. The drying rate curves as a function of moisture content showed only decreasing drying rate period. Then, a very good agreement between the measured and simualtion results of the profile of moisture content in solids was produced by simulator. Finally, asimulated continuous fluidized bed dryer for paddy with dimension 5 m of length and 1.5 of width was succesfully performed, in which the influence of mass solid flow rate 0.1; 0.2; 0.4 tons/h, height of bed 0.25; 0.50; 0.75 m, and air temperature 50; 70; 100 °C on drying process were studied. Keywords: Paddy; fluid bed dryer; batch, contonious;  modelling; simulation


Author(s):  
Akash H. Mali ◽  
Aditya R. Nikam ◽  
Azam Z. Shaikh.

This artical also discusses about demostration of fluidized bed dryer with principle and application and other processing. This has lead to development of thechnology, process and equipments which not only reduce time but also increasing the output. A Fluidized bed dryer significantely reduce drying time, compared with vaccum dryer or tray dryer. In the pharmacutical industry, fluidized bed dryer are typically used for pellets drying, coating and granulation. Fluidized bed drying are very well known to yield high heat and mass transfer and hence adopted to many industrial drying process particularly pharmacy product. In this paper we show construction, working of the fluidized bed dryer. It work on the drying principle. It has several advantages and disadvantages.


Sign in / Sign up

Export Citation Format

Share Document