scholarly journals Hydroxyapatite/nifuroxazide conjugate: Characterization, drug release and antimicrobial activity

Author(s):  
Zeljko Radovanovic ◽  
Katarina Mihajlovski ◽  
Lidija Radovanovic ◽  
Djordje Janackovic ◽  
Rada Petrovic

Synthetic hydroxyapatite (Ca10(PO4)6(OH)2, HAp) is very similar to the inorganic part of the bones and teeth of mammals. It is a well-known biomaterial with good biocompatibility, osteoconductivity and bioactivity. Nifuroxazide (C12H9N3O5, NFX) is a broad-spectrum antibacterial drug and poorly soluble in water. In order to increase the solubility of NFX, nanosized HAp powder and raw NFX drug were mixed giving, as a result, HAp/NFX conjugate. Characterization of the raw materials and the obtained conjugate confirmed the integration of NFX on the HAp surface. The in vitro study of drug release in simulated stomach acid and intestinal fluid showed a much faster release of NFX from HAp surface than those of raw drug. HAp/NFX conjugate showed an excellent inhibitory effect against Gram-positive bacterium Staphylococcus aureus, Gram-negative bacterium Escherichia coli and yeast Candida albicans, proving the nanosized HAp powder as a promising drug carrier.

RSC Advances ◽  
2017 ◽  
Vol 7 (63) ◽  
pp. 39718-39725 ◽  
Author(s):  
Chuncai Zhou ◽  
Xinyu Zhou ◽  
Xiaokai Su

The PCL35-b-PEG45-b-EPL23 vesicles perform well in vitro drug release and antibacterial activity against Gram− and Gram+ bacteria with low cytotoxicity.


2013 ◽  
Vol 33 (7) ◽  
pp. 659-664 ◽  
Author(s):  
Zhuan Zhang ◽  
Liao-Bing Chen ◽  
Jie Gao ◽  
Feng Bao ◽  
Jing Yin ◽  
...  

Abstract A biodegradable local drug release system consisting of poly(sebacic anhydride) and polylactic acid was developed for the purpose of osteomyelitis therapy. Five kinds of poly(sebacic anhydride) with different molecular weights were synthesized, and levofloxacin was chosen as a model antibacterial drug in the in vitro release within 38 days. As the molecular weight of poly(sebacic anhydride) increased, the melting point (Tm) of the matrices increased and the surface morphology became smoother. Consequently, the initial burst effect was reduced and the release rate significantly decreased. In addition, the kinetics of pills containing poly(sebacic anhydride) (Mw=13,000) were close to zero order release. The release profile reveals that the thermodynamic properties and morphology of these matrices, which are affected by the molecular weight, are essential for developing controllable delivery systems. The drug release rate could be easily controlled by the molecular weight of the poly(sebacic anhydride). Finally, these prospective results allow the biodegradable controlled release systems to be employed as carriers for the treatment of chronic osteomyelitis, as well as for other medical applications.


Author(s):  
MOHAMMAD F. BAYAN

Objective: The main aim of this study was to design a drug carrier capable to control and enhance the release of poorly water soluble drugs. Methods: Three polymeric formulations, based on poly (2-hydroxyethyl methacrylate) and loaded with different Capmul® MCM C8 concentrations (0, 10 and 20 % w/w), were prepared. Felodipine, which is a poorly soluble substance, was selected as a model drug. The effect of Capmul® MCM C8 on swelling behavior and in vitro release profile of the prepared polymer was investigated in PBS. Results: The swelling profiles of allformulationswere statistically similar, which indicated the non-significant effect of added Capmul® MCM C8 on polymer's swelling behavior. All formulations showed a delayed drug release. Formulation-F3, which is loaded with 20% w/wCapmul® MCM C8 displayed a significant higher release compared to the other formulations. Conclusion: Capmul® MCM products, which are widely used in food industries, can be used to improve the oral delivery of poorly soluble substances. The optimized formulation exhibited the ability to control and enhance the release of the model drug.


Author(s):  
Neeraj Agrawal ◽  
M.J. Chandrasekar ◽  
U.V. Sara ◽  
Rohini A.

A macromolecular prodrug of didanosine (ddI) for oral administration was synthesized and evaluated for in-vitro drug release profile. Didanosine was first coupled to 2-hydroxy ethyl methacrylate (HEMA) through a succinic spacer to form HEMA-Suc-ddI monomeric conjugate which was subsequently polymerized to yield Poly(HEMA-Suc-ddI) conjugate. The structures of the synthesized compounds were characterized by FT-IR, Mass and 1H-NMR spectroscopy. The prodrug was subjected for in-vitro drug release studies in buffers of pH 1.2 and 7.4 mimicking the upper and lower GIT. The results showed that the drug release from the polymeric backbone takes place in a sustained manner over a period of 24 h and the amount of drug released was comparatively higher at pH 7.4 indicating that the drug release takes place predominantly at the alkaline environment of the lower GIT rather than at the acidic environment of the upper GIT. This pH dependent sustained drug release behavior of the prodrug may be capable of reducing the dose limiting toxicities by maintaining the plasma drug level within the therapeutic range and increasing t1/2 of ddI. Moreover, the bioavailability of the drug should be improved as the prodrug releases ddI predominantly in the alkaline environment which will reduce the degradation of ddI in the stomach acid.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Qun Zhang ◽  
Zengqiang Qu ◽  
Yanqing Zhou ◽  
Jin Zhou ◽  
Junwei Yang ◽  
...  

Abstract Background Cornin is a commonly used herb in cardiology for its cardioprotective effect. The effect of herbs on the activity of cytochrome P450 enzymes (CYP450s) can induce adverse drug-drug interaction even treatment failure. Therefore, it is necessary to investigate the effect of cornin on the activity of CYP450s, which can provide more guidance for the clinical application of cornin. Methods Cornin (100 μM) was incubated with eight isoforms of CYP450s, including CYP1A2, 2A6, 3A4, 2C8, 2C9, 2C19, 2D6, and 2E1, in pooled human liver microsomes. The inhibition model and corresponding parameters were also investigated. Results Cornin exerted significant inhibitory effect on the activity of CYP3A4, 2C9, and 2E1 in a dose-dependent manner with the IC50 values of 9.20, 22.91, and 14.28 μM, respectively (p < 0.05). Cornin inhibited the activity of CYP3A4 non-competitively with the Ki value of 4.69 μM, while the inhibition of CYP2C9 and 2E1 by cornin was competitive with the Ki value of 11.31 and 6.54 μM, respectively. Additionally, the inhibition of CYP3A4 by cornin was found to be time-dependent with the KI/Kinact value of 6.40/0.055 min− 1·μM− 1. Conclusions The inhibitory effect of cornin on the activity of CYP3A4, 2C9, and 2E1 indicated the potential drug-drug interaction between cornin and drugs metabolized by these CYP450s, which needs further investigation and validation.


Polymers ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 46
Author(s):  
Mohammed Badwelan ◽  
Mohammed Alkindi ◽  
Osama Alghamdi ◽  
Waseem Sharaf Saeed ◽  
Abdel-Basit Al-Odayni ◽  
...  

Two poly(δ-valerolactone)/poly(ethylene-co-vinylalcohol)/β-tricalcium phosphate (PEVAL/PDVAL/β-TCP) composites containing an equal ratio of polymer and filled with 50 and 70 wt% of β-TCP microparticles were prepared by the solvent casting method. Interconnected pores were realized using the salt leached technique, and the porosity of the resulted composites was evaluated by the scanning electron microscopy (SEM) method. The homogeneity of the hybrid materials was investigated by differential scanning calorimetry (DSC) and X-ray diffraction (XRD) analysis. The prepared materials’ SEM images showed interconnected micropores that respond to the conditions required to allow their uses as scaffolds. The porosity of each scaffold was determined from micro computed tomography (micro-CT) data, and the analysis of the mechanical properties of the prepared materials was studied through the stress-strain compressive test. The proliferation test results used human mesenchymal stem cells (MSCs) to grow and proliferate on the different types of prepared materials, reflecting that the hybrid materials were non-toxic and could be biologically acceptable scaffolds. The antibacterial activity test revealed that incorporation of amoxicillin in the specimens could inhibit the bacterial growth of S. aureus. The in vitro study of the release of amoxicillin from the PEVAL/PDVAL/amoxicillin and PEVAL/PDVAL/β-TCP/amoxicillin drug carrier systems in pH media 7.4, during eight days, gave promising results, and the antibiotic diffusion in these scaffolds obeys the Fickian model.


2004 ◽  
Vol 91 (03) ◽  
pp. 473-479 ◽  
Author(s):  
Ana Guimarães ◽  
Dingeman Rijken

SummaryTAFIa was shown to attenuate fibrinolysis. In our in vitro study, we investigated how the inhibitory effect of TAFIa depended on the type and concentration of the plasminogen activator (PA). We measured PA-mediated lysis times of plasma clots under conditions of maximal TAFI activation by thrombin-thrombomodulin in the absence and presence of potato carboxypeptidase inhibitor. Seven different PAs were compared comprising both tPA-related (tPA, TNK-tPA, DSPA), bacterial PA-related (staphylokinase and APSAC) and urokinase-related (tcu-PA and k2tu-PA) PAs. The lysis times and the retardation factor were plotted against the PA concentration. The retardation factor plots were bell-shaped. At low PA concentrations, the retardation factor was low, probably due to the limited stability of TAFIa. At intermediate PA concentrations the retardation factor was maximal (3-6 depending on the PA), with TNK-tPA, APSAC and DSPA exhibiting the strongest effect. At high PA concentrations, the retardation factor was again low, possibly due to inactivation of TAFIa by plasmin or to a complete conversion of glu-plasminogen into lys-plasminogen. Using individual plasmas with a reduced plasmin inhibitor activity (plasmin inhibitor Enschede) the bell-shaped curve of the retardation factor shifted towards lower tPA and DSPA concentrations, but the height did not decrease. In conclusion, TAFIa delays the lysis of plasma clots mediated by all the plasminogen activators tested. This delay is dependent on the type and concentration of the plasminogen activator, but not on the fibrin specificity of the plasminogen activator. Furthermore, plasmin inhibitor does not play a significant role in the inhibition of plasma clot lysis by TAFI.


2014 ◽  
Vol 50 (4) ◽  
pp. 851-858 ◽  
Author(s):  
Isabela Moreira Baumgratz de Paula ◽  
Flávia Costa Moraes ◽  
Orlando Vieira de Souza ◽  
Célia Hitomi Yamamoto

Rosmarinus officinalis, which belongs to the Lamiaceaefamily, is a species of medicinal flora with therapeutic properties. In order to exploit the benefits of these properties, a mouthwash formulation was developed, with careful selection of raw materials to meet pharmacotechnical requirements. Extracts of the plant were incorporated into a mouthwash, which was shown to have inhibitory action in vitro against the micro-organisms commonly found in periodontics. Controls for assessing the quality of the drugs were carried out, quantifying phenols and flavonoids as chemical markers. Mouthwash solutions were formulated containing 0.1, 5 and 10% ethanol extract of R. officinalis; and 0.05, 5 and 10% of the hexane fraction of R. officinalis. In order to evaluate synergism, ethanol extract and hexane fraction were also added to formulations containing 0.05% sodium fluoride and 0.12% chlorhexidine digluconate. These formulations were assessed for inhibitory effect against the specific microorganisms involved in the process of bacterial plaque formation, S. mutans(ATCC25175) and C. albicans(ATCC 10231), frequently found in cases of oral infections. The agar diffusion method was used to evaluate the inhibitory activity of extracts and formulations. All mouthwash solutions displayed inhibitory activity having higher sensitivity to S. mutansfor the 5% ethanol extract+0.05% sodium fluoride, and greater sensitivity to C. albicansfor the 10% hexane fraction. Results were characterized by the appearance of a growth inhibition halo, justifying the utilization and association of extracts of R. officinalis.


2021 ◽  
Vol 321 ◽  
pp. 04011
Author(s):  
Navideh Abbasnezhad ◽  
Farid Bakir ◽  
Stéphane Champmartin ◽  
Mohammadali Shirinbayan

Drug-eluting stents implanted in blood vessels are subject to various dynamics of blood flow. In this study, we present the evaluation of a mathematical model considering the effect of flow rate, to simulate the kinetic profiles of drug release (Diclofenac Sodium (DS)) from in-vitro from PLGA films. This model solves a set of non-linear equation for modeling simultaneously the burst, diffusion, swelling and erosion involved in the mechanisms of liberation. The release parameters depending on the flow rate are determined using the corresponding mathematical equations. For the evaluation of the proposed model, test data obtained in our laboratory are used. To quantify DS release from drug-carrier PLGA films, we used the flow-through cell apparatus in a closed-loop. Four flow rate values are applied. For each value, the model-substance liberation kinetics showed an increase in drug released with the flow rate. The simulated release profiles show good agreement with the experimental results. Therefore, the use of this model could provide a practical tool to assess in-vitro drug release profiles from polymer matrices under continuous flow rate constraint, and could help improve the design of drug eluting stents.


2021 ◽  
Vol 18 ◽  
Author(s):  
Shulei Duan ◽  
Jingfu Jia ◽  
Biao Hong ◽  
Jie Zhou ◽  
Yi Zhang ◽  
...  

Introduction: The amentoflavone (AMF) loaded polymeric sub-micron particles were prepared using supercritical antisolvent (SAS) technology with the aim of improving the anticancer activity of AMF. Materials and Methods: Zein and phospholipid mixtures composed of hydrogenated phosphatidylcholine (HPC) and egg lecithin (EPC) were used as carrier materials and, the effects of carrier composition on the product morphology and drug release behavior were investigated. When the mass ratio of Zein/HPC/EPC was 7/2/1, the AMF loaded particles were spherical shape and sub-micron sized around 400 nm, with a drug load of 4.3±0.3 w% and entrapment efficacy of 87.8±1.8%. The in vitro drug release assay showed that adding EPC in the wall materials could improve the dispersion stability of the released AMF in an aqueous medium, and the introduction of HPC could accelerate the drug release speed. Results: MTT assay demonstrated that AMF-loaded micron particles have an improved inhibitory effect on A375 cells, whose IC50 was 37.39μg/ml, compared with that of free AMF(130.2μg/ml). Conclusion: It proved that the AMF loaded sub-micron particles prepared by SAS were a prospective strategy to improve the antitumor activity of AMF, and possibly promote the clinical use of AMF preparations.


Sign in / Sign up

Export Citation Format

Share Document