scholarly journals Poly(δ-valerolactone)/Poly(ethylene-co-vinylalcohol)/β-Tricalcium Phosphate Composite as Scaffolds: Preparation, Properties, and In Vitro Amoxicillin Release

Polymers ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 46
Author(s):  
Mohammed Badwelan ◽  
Mohammed Alkindi ◽  
Osama Alghamdi ◽  
Waseem Sharaf Saeed ◽  
Abdel-Basit Al-Odayni ◽  
...  

Two poly(δ-valerolactone)/poly(ethylene-co-vinylalcohol)/β-tricalcium phosphate (PEVAL/PDVAL/β-TCP) composites containing an equal ratio of polymer and filled with 50 and 70 wt% of β-TCP microparticles were prepared by the solvent casting method. Interconnected pores were realized using the salt leached technique, and the porosity of the resulted composites was evaluated by the scanning electron microscopy (SEM) method. The homogeneity of the hybrid materials was investigated by differential scanning calorimetry (DSC) and X-ray diffraction (XRD) analysis. The prepared materials’ SEM images showed interconnected micropores that respond to the conditions required to allow their uses as scaffolds. The porosity of each scaffold was determined from micro computed tomography (micro-CT) data, and the analysis of the mechanical properties of the prepared materials was studied through the stress-strain compressive test. The proliferation test results used human mesenchymal stem cells (MSCs) to grow and proliferate on the different types of prepared materials, reflecting that the hybrid materials were non-toxic and could be biologically acceptable scaffolds. The antibacterial activity test revealed that incorporation of amoxicillin in the specimens could inhibit the bacterial growth of S. aureus. The in vitro study of the release of amoxicillin from the PEVAL/PDVAL/amoxicillin and PEVAL/PDVAL/β-TCP/amoxicillin drug carrier systems in pH media 7.4, during eight days, gave promising results, and the antibiotic diffusion in these scaffolds obeys the Fickian model.

Author(s):  
Ahmad Almehmadi

Abstract The re-use of healing abutments (HAs) has become common practice in implant dentistry for economic concerns and the aim of this in-vitro study was to assess the effect of sodium hypochlorite (NaOCl) in decontamination of HAs. 122 HAs (Used and sterilized n=107; New n=15) were procured from 3 centers, of which 3 samples were discarded due to perforation in sterilization pouch.  For sterility assessment, the used HAs (n=80) were cultured in Brain Heart Infusion Broth (BHI) and Potato Dextrose Agar (PDA), bacterial isolates were identified in 7 samples. Also, 24 used HAs were stained with Phloxine B, photographed and compared to new HAs (n=5). Scanning electron microscope (SEM) assessed the differences between the two sets of HAs, following which the 7 contaminated HAs along with 24 used HAs from staining experiment (Total=31) were subsequently treated with sodium hypochlorite (NaOCl) and SEM images were observed. About 8.75% of HAs tested positive in bacterial culture; Streptococcus sanguis, Dermabacter hominis, Staphylococcus haemolyticus, and Aspergillus species were isolated. Phloxine B staining was positive for used and sterilized HAs when compared to controls. The SEM images revealed deposits in the used HAs and although treatment with NaOCl eliminated the contamination of cultured HAs, the SEM showed visible debris in the HA thread region. This in-vitro study concluded that SEM images showed debris in used HAs at screw-hole and thread regions even though they tested negative in bacterial culture. The treatment with NaOCl of used HAs showed no bacterial contamination but the debris was observed in SEM images. Future studies on the chemical composition, biological implications, and clinical influence is warranted before considering the reuse of HAs.


2020 ◽  
Vol 17 (3) ◽  
pp. 246-256
Author(s):  
Kriti Soni ◽  
Ali Mujtaba ◽  
Md. Habban Akhter ◽  
Kanchan Kohli

Aim: The intention of this investigation was to develop Pemetrexed Diacid (PTX)-loaded gelatine-cloisite 30B (MMT) nanocomposite for the potential oral delivery of PTX and the in vitro, and ex vivo assessment. Background: Gelatin/Cloisite 30 B (MMT) nanocomposites were prepared by blending gelatin with MMT in aqueous solution. Methods: PTX was incorporated into the nanocomposite preparation. The nanocomposites were investigated by Fourier Transmission Infra Red Spectroscopy (FT-IR), Differential Scanning Calorimetry (DSC), Scanning Electron Microscope (SEM) X-Ray Diffraction (XRD) and Confocal Laser Microscopy (CLSM). FT-IR of nanocomposite showed the disappearance of all major peaks which corroborated the formation of nanocomposites. The nanocomposites were found to have a particle size of 121.9 ± 1.85 nm and zeta potential -12.1 ± 0.63 mV. DSC thermogram of drug loaded nanocomposites indicated peak at 117.165 oC and 205.816 oC, which clearly revealed that the drug has been incorporated into the nanocomposite because of cross-linking of cloisite 30 B and gelatin in the presence of glutaraldehyde. Results: SEM images of gelatin show a network like structure which disappears in the nanocomposite. The kinetics of the drug release was studied in order to ascertain the type of release mechanism. The drug release from nanocomposites was in a controlled manner, followed by first-order kinetics and the drug release mechanism was found to be of Fickian type. Conclusion: Ex vivo gut permeation studies revealed 4 times enhancement in the permeation of drug present in the nanocomposite as compared to plain drug solution and were further affirmed by CLSM. Thus, gelatin/(MMT) nanocomposite could be promising for the oral delivery of PTX in cancer therapy and future prospects for the industrial pharmacy.


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 365
Author(s):  
Seon-Hee Shin ◽  
Hyung-Seog Yu ◽  
Jung-Yul Cha ◽  
Jae-Sung Kwon ◽  
Chung-Ju Hwang

The accurate expression of bracket prescription is important for successful orthodontic treatment. The aim of this study was to evaluate the accuracy of digital scan images of brackets produced by four intraoral scanners (IOSs) when scanning the surface of the dental model attached with different bracket materials. Brackets made from stainless steel, polycrystalline alumina, composite, and composite/stainless steel slot were considered, which have been scanned from four different IOSs (Primescan, Trios, CS3600, and i500). SEM images were used as references. Each bracket axis was set in the reference scan image, and the axis was set identically by superimposing with the IOS image, and then only the brackets were divided and analyzed. One-way analysis of variance (ANOVA) was used to compare the differences. The difference between the manufacturer’s nominal torque and bracket slot base angle was 0.39 in SEM, 1.96 in Primescan, 2.04 in Trios, and 5.21 in CS3600 (p < 0.001). The parallelism, which is the difference between the upper and lower angles of the slot wall, was 0.48 in SEM, 7.00 in Primescan, 5.52 in Trios, 6.34 in CS3600, and 23.74 in i500 (p < 0.001). This study evaluated the accuracy of the bracket only, and it must be admitted that there is some error in recognizing slots through scanning in general.


Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1600
Author(s):  
Maria Szymonowicz ◽  
Maciej Dobrzynski ◽  
Sara Targonska ◽  
Agnieszka Rusak ◽  
Zbigniew Rybak ◽  
...  

The replacement of affected blood vessels of the polymer material can cause imbalances in the blood haemostatic system. Changes in blood after the implantation of vascular grafts depend not only on the chemical composition but also on the degree of surface wettability. The Dallon® H unsealed hydrophilic knitted vascular prosthesis double velour was assessed at work and compare with hydrophobic vascular prosthesis Dallon®. Spectrophotometric studies were performed in the infrared and differential scanning calorimetry, which confirmed the effectiveness of the process of modifying vascular prostheses. Determination of the parameters of coagulation time of blood after contact in vitro with Dallon® H vascular prosthesis was also carried out. Prolongation of activated thromboplastin time, decreased activity of factor XII, IX and VIII, were observed. The prolonged thrombin and fibrinogen were reduced in the initial period of the experiment. The activity of plasminogen and antithrombin III and protein C were at the level of control value. The observed changes in the values of determined parameters blood coagulation do not exceed the range of referential values for those indexes. The observed changes are the result of considerable blood absorptiveness by the prosthesis of blood vessels and their sealing.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Chukwuebuka H. Ozoude ◽  
Chukwuemeka P. Azubuike ◽  
Modupe O. Ologunagba ◽  
Sejoro S. Tonuewa ◽  
Cecilia I. Igwilo

Abstract Background Khaya gum is a bark exudate from Khaya senegalensis (Maliaecae) that has drug carrier potential. This study aimed to formulate and comparatively evaluate metformin-loaded microspheres using blends of khaya gum and sodium alginate. Khaya gum was extracted and subjected to preformulation studies using established protocols while three formulations (FA; FB and FC) of metformin (1% w/v)-loaded microspheres were prepared by the ionic gelation method using 5% zinc chloride solution as the cross-linker. The formulations contained 2% w/v blends of khaya gum and sodium alginate in the ratios of 2:3, 9:11, and 1:1, respectively. The microspheres were evaluated by scanning electron microscopy, Fourier transform-infrared spectroscopy, differential scanning calorimetry, entrapment efficiency, swelling index, and in vitro release studies. Results Yield of 28.48%, pH of 4.00 ± 0.05, moisture content (14.59% ± 0.50), and fair flow properties (Carr’s index 23.68 ± 1.91 and Hausner’s ratio 1.31 ± 0.03) of the khaya gum were obtained. FTIR analyses showed no significant interaction between pure metformin hydrochloride with excipients. Discrete spherical microspheres with sizes ranging from 1200 to 1420 μm were obtained. Drug entrapment efficiency of the microspheres ranged from 65.6 to 81.5%. The release of the drug from microspheres was sustained for the 9 h of the study as the cumulative release was 62% (FA), 73% (FB), and 80% (FC). The release kinetics followed Korsmeyer-Peppas model with super case-II transport mechanism. Conclusion Blends of Khaya senegalensis gum and sodium alginate are promising polymer combination for the preparation of controlled-release formulations. The blend of the khaya gum and sodium alginate produced microspheres with controlled release properties. However, the formulation containing 2:3 ratio of khaya gum and sodium alginate respectively produced microspheres with comparable controlled release profiles to the commercial brand metformin tablet.


2012 ◽  
Vol 62 (4) ◽  
pp. 529-545 ◽  
Author(s):  
Anuj Chawla ◽  
Pooja Sharma ◽  
Pravin Pawar

The aim of the study was to prepare site specific drug delivery of naproxen sodium using sodium alginate and Eudragit S-100 as a mucoadhesive and pH-sensitive polymer, respectively. Core microspheres of alginate were prepared by a modified emulsification method followed by cross-linking with CaCl2, which was further coated with the pH dependent polymer Eudragit S-100 (2.5 or 5 %) to prevent drug release in the upper gastrointestinal environment. Microspheres were characterized by FT-IR spectroscopy, X-ray diffraction, differential scanning calorimetry and evaluated by scanning electron microscopy, particle size analysis, drug loading efficiency, in vitro mucoadhesive time study and in vitro drug release study in different simulated gastric fluids. Stability studies of the optimized formulation were carried out for 6 months. SEM images revealed that the surface morphology was rough and smooth for core and coated microspheres, respectively. Core microspheres showed better mucoadhesion compared to coated microspheres when applied to the mucosal surface of freshly excised goat colon. The optimized batch of core microspheres and coated microspheres exhibited 98.42 ± 0.96 and 95.58 ± 0.74 % drug release, respectively. Drug release from all sodium alginate microsphere formulations followed Higuchi kinetics. Moreover, drug release from Eudragit S-100 coated microspheres followed the Korsmeyer-Peppas equation with a Fickian kinetics mechanism. Stability study suggested that the degradation rate constant of microspheres was minimal, indicating 2 years shelf life of the formulation.


Polymers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1731
Author(s):  
Dorota Kolbuk ◽  
Oliwia Jeznach ◽  
Michał Wrzecionek ◽  
Agnieszka Gadomska-Gajadhur

This study was conducted as a first step in obtaining eco-friendly fibres for medical applications using a synthesised oligomer poly(glycerol succinate) (PGSu) as an additive for synthetic poly(L-lactic acid) (PLLA) and poly (L-lactide-co-caprolactone) (PLCL). The effects of the oligomer on the structure formation, morphology, crystallisation behaviour, and mechanical properties of electrospun bicomponent fibres were investigated. Nonwovens were investigated by means of scanning electron microscopy (SEM), wide angle X-ray scattering (WAXS), differential scanning calorimetry (DSC), and mechanical testing. The molecular structure of PLLA fibres is influenced by the presence of PGSu mainly acting as an enhancer of molecular orientation. In the case of semicrystalline PLCL, chain mobility was enhanced by the presence of PGSu molecules, and the crystallinity of bicomponent fibres increased in relation to that of pure PLCL. The mechanical properties of bicomponent fibres were influenced by the level of PGSu present and the extent of crystal formation of the main component. An in vitro study conducted using L929 cells confirmed the biocompatible character of all bicomponent fibres.


Nanomaterials ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2602
Author(s):  
Aslihan Secgin-Atar ◽  
Gokce Aykol-Sahin ◽  
Necla Asli Kocak-Oztug ◽  
Funda Yalcin ◽  
Aslan Gokbuget ◽  
...  

The aim of our study was to obtain similar surface properties and elemental composition to virgin implants after debridement of contaminated titanium implant surfaces covered with debris. Erbium-doped:yttrium, aluminum, and garnet (Er:YAG) laser, erbium, chromium-doped:yttrium, scandium, gallium, and garnet (Er,Cr:YSGG) laser, curette, and ultrasonic device were applied to contaminated implant surfaces. Scanning electron microscopy (SEM) images were taken, the elemental profile of the surfaces was evaluated with energy dispersive X-ray spectroscopy (EDX), and the surface roughness was analyzed with profilometry. Twenty-eight failed implants and two virgin implants as control were included in the study. The groups were designed accordingly; titanium curette group, ultrasonic scaler with polyetheretherketone (PEEK) tip, Er: YAG very short pulse laser group (100 μs, 120 mJ/pulse 10 Hz), Er: YAG short-pulse laser group (300 μs, 120 mJ/pulse, 10 Hz), Er: YAG long-pulse laser group (600 μs, 120 mJ/pulse, 10 Hz), Er, Cr: YSGG1 laser group (1 W 10 Hz), Er, Cr: YSGG2 laser group (1.5 W, 30 Hz). In each group, four failed implants were debrided for 120 s. When SEM images and EDX findings and profilometry results were evaluated together, Er: YAG long pulse and ultrasonic groups were found to be the most effective for debridement. Furthermore, the two interventions have shown the closest topography of the sandblasted, large grit, acid-etched implant surface (SLA) as seen on virgin implants.


Author(s):  
Pravin S Patil ◽  
Shashikant C Dhawale

 Objective: The purpose of the present investigation was to develop a nanosuspension to improve dissolution rate and oral bioavailability of ritonavir.Methods: Extended-release ritonavir loaded nanoparticles were prepared using the polymeric system by nanoprecipitation technique. Further, the effect of Eudragit RL100 (polymeric matrix) and polyvinyl alcohol (surfactant) was investigated on particle size and distribution, drug content, entrapment efficiency, and in vitro drug release from nanosuspension where a strong influence of polymeric contents was observed. Drug-excipient compatibility and amorphous nature of drug in prepared nanoparticles were confirmed by Fourier transform infrared spectroscopy, differential scanning calorimetry, and powder X-ray diffraction studies, respectively.Results: Hydrophobic portions of Eudragit RL100 could result in enhanced encapsulation efficiency. However, increase in polymer and surfactant contents lead to enlarged particle size proportionately as confirmed by transmission electron microscopy. Nanosuspension showed a significant rise in dissolution rate with complete in vitro drug release as well as higher bioavailability in rats compared to the pure drug.Conclusion: The nanoprecipitation technique used in present research could be further explored for the development of different antiretroviral drug carrier therapeutics.


Sign in / Sign up

Export Citation Format

Share Document