scholarly journals Effect of temperature on non-linear dynamical property of stuffer box crimping and bubble electrospinning

2014 ◽  
Vol 18 (3) ◽  
pp. 1049-1053 ◽  
Author(s):  
Jian-Xin Huang ◽  
Min-Feng Song ◽  
Hai-Yan Kong ◽  
Ping Wang ◽  
Ji-Huan He

The velocity of axially moving slender fiber of viscoelastic fluid is an important factor in mass-production of crimped fibers in stuffer box crimping and bubble electrospinning. A governing equation for fiber crimp is obtained by the Hamilton?s principle, and the natural frequency and critical axially moving velocity are obtained analytically by considering the thermal effect. It is concluded that a high temperature gradient can greatly enhance the production ratio and guarantee the fundamental transverse vibration. Additionally the effects of the tensile axial load and amplitude on transverse vibration are also elucidated.


2020 ◽  
Vol 2020 ◽  
pp. 1-18
Author(s):  
Hongbo Wang ◽  
Shimin Dong

The mechanical model of transverse vibration of sucker rod string (SRS) in directional well is simplified to the transverse vibration model of longitudinal and transverse curved beam with initial bending under borehole constraints. In this paper, besides considering the excitation of alternating axial load on the transverse vibration of SRS, it is proposed for the first time that curved borehole is also the main excitation for the transverse vibration when the SRS moves reciprocating axially in the borehole. Based on the elastic body vibration theory, the transverse vibration mathematical model of SRS with initial bending under borehole constraints is established. In this model, the curved borehole excitation caused by the axial motion and the alternating axial load excitation is considered. Besides, the elastic collision theory is applied to describe the constraint of tube on the SRS transverse vibration in this model. Then the fourth-order Runge–Kutta method is used to calculate the transverse vibration of SRS in directional wells. The simulation results show the following: (1) The simulation results of the three simulation models in this paper are different. The results indicate that the curved borehole excitation caused by the axial motion and the alternating axial load excitation is the main excitation for the SRS transverse vibration. (2) In directional wells, the rod and tube contact along the well depth, and the dangerous sections locate at the deviation section of the borehole and the compression section of the rod. On the whole, the contact force between rod and tube in deviation section of borehole is larger. The transverse vibration of the compression section of the rod is the most violent.





Author(s):  
T. Sato ◽  
S. Kitamura ◽  
T. Sueyoshl ◽  
M. Iwatukl ◽  
C. Nielsen

Recently, the growth process and relaxation process of crystalline structures were studied by observing a SI nano-pyramid which was built on a Si surface with a UHV-STM. A UHV-STM (JEOL JSTM-4000×V) was used for studying a heated specimen, and the specimen was kept at high temperature during observation. In this study, the nano-fabrication technique utilizing the electromigration effect between the STM tip and the specimen was applied. We observed Si atoms migrated towords the tip on a high temperature Si surface.Clean surfaces of Si(lll)7×7 and Si(001)2×l were prepared In the UHV-STM at a temperature of approximately 600 °C. A Si nano-pyramid was built on the Si surface at a tunneling current of l0nA and a specimen bias voltage of approximately 0V in both polarities. During the formation of the pyramid, Images could not be observed because the tip was stopped on the sample. After the formation was completed, the pyramid Image was observed with the same tip. After Imaging was started again, the relaxation process of the pyramid started due to thermal effect.



2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Rui Zhang ◽  
Yujie Meng ◽  
Hejia Song ◽  
Ran Niu ◽  
Yu Wang ◽  
...  

Abstract Background Although exposure to air pollution has been linked to many health issues, few studies have quantified the modification effect of temperature on the relationship between air pollutants and daily incidence of influenza in Ningbo, China. Methods The data of daily incidence of influenza and the relevant meteorological data and air pollution data in Ningbo from 2014 to 2017 were retrieved. Low, medium and high temperature layers were stratified by the daily mean temperature with 25th and 75th percentiles. The potential modification effect of temperature on the relationship between air pollutants and daily incidence of influenza in Ningbo was investigated through analyzing the effects of air pollutants stratified by temperature stratum using distributed lag non-linear model (DLNM). Stratified analysis by sex and age were also conducted. Results Overall, a 10 μg/m3 increment of O3, PM2.5, PM10 and NO2 could increase the incidence risk of influenza with the cumulative relative risk of 1.028 (95% CI 1.007, 1.050), 1.061 (95% CI 1.004, 1.122), 1.043 (95% CI 1.003, 1.085), and 1.118 (95% CI 1.028, 1.216), respectively. Male and aged 7–17 years were more sensitive to air pollutants. Through the temperature stratification analysis, we found that temperature could modify the impacts of air pollution on daily incidence of influenza with high temperature exacerbating the impact of air pollutants. At high temperature layer, male and the groups aged 0–6 years and 18–64 years were more sensitive to air pollution. Conclusion Temperature modified the relationship between air pollution and daily incidence of influenza and high temperature would exacerbate the effects of air pollutants in Ningbo.



2008 ◽  
Vol 53 (1) ◽  
pp. 115-129 ◽  
Author(s):  
Susan H. Ferguson ◽  
Shane M. Powell ◽  
Ian Snape ◽  
John A.E. Gibson ◽  
Peter D. Franzmann


2017 ◽  
Vol 898 ◽  
pp. 422-429 ◽  
Author(s):  
Wei Guo Zhang ◽  
Zhi Jie Liu ◽  
Song Ke Feng ◽  
Fu Zeng Yang ◽  
Lin Liu

The stress rupture life of DZ125 nickel-based superalloy that was prepared by directional solidification process under the temperature gradient of 500 K/cm has been studied at 900°C and 235MPa. The results showed that with the increase of directional solidification rate from 50 μm/s to 800 μm/s, the primary dendrite arm spacing reduced from 94 μm to 35.8 μm and γ' precipitates reduced and more uniformed in size. The high temperature stress rupture life of as-cast sample increased firstly and then decreased and reached its maximum at the solidification rate of 500 μm/s. The dislocation configuration of sample with refine dendritic structure after stress rupture was investigated and discovered that the dislocations in different parts of sample had different morphology and density, which indicated that the deformation of as-cast samples were uneven during high temperature stress rupture. A lot of dislocations intertwined around carbides and at the interface of γ/γ', and the dislocation networks were destroyed and the dislocations entered γ' precipitate by the way of cutting.



2017 ◽  
Vol 17 (4) ◽  
pp. 13-18
Author(s):  
A. Bajwoluk ◽  
P. Gutowski

Abstract The results of research on the effect of the type of cooling agent used during heat treatment and thermal-chemical treatment on the formation of temperature gradient and stress-deformation distribution in cast pallets, which are part of furnace accessories used in this treatment, are disclosed. During operation, pallets are exposed to the effect of the same conditions as the charge they are carrying. Cyclic thermal loads are the main cause of excessive deformations or cracks, which after some time of the cast pallet operation result in its withdrawal due to damage. One of the major causes of this damage are stresses formed under the effect of temperature gradient in the unevenly cooled pallet construction. Studies focused on the analysis of heat flow in a charge-loaded pallet, cooled by various cooling agents characterized by different heat transfer coefficients and temperature. Based on the obtained temperature distribution, the stress distribution and the resulting deformation were examined. The results enabled drawing relevant conclusions about the effect of cooling conditions on stresses formed in the direction of the largest temperature gradient.



Author(s):  
S Ganesh ◽  
M Mishra

Abstract Thermal systems have traditionally been modeled via Euclideanized space by analytical continuation of time to an imaginary time. We extend the concept to static thermal gradients by recasting the temperature variation as a variation in the Euclidean metric. We apply this prescription to determine the Quark anti-Quark potential in a system with thermal gradient. A naturally occurring QCD medium with thermal gradients is a Quark Gluon Plasma (QGP). However, the QGP evolves in time. Hence, we use a quasi-stationary approximation, which is applicable only if the rate of time evolution is slow. Hence the application of our proposal to a Quark anti-Quark potential in QGP can be seen as a step towards a more exact theory which would incorporate time varying thermal gradients. The effect of a static temperature gradient on the Quark anti-Quark potential is analyzed using a gravity dual model. A non-uniform black string metric is developed, by perturbing the Schwarzchild metric, which allows to incorporate the temperature gradient in the dual AdS space. Finally, an expression for the Quark anti-Quark potential, in the presence of a static temperature gradient, is derived.



1962 ◽  
Vol 84 (3) ◽  
pp. 223-257 ◽  
Author(s):  
F. Eberle ◽  
C. H. Anderson

The scales formed on seven ferritic and ten austenitic types of commercial tubing presently in use and of potential future use for superheater service were examined after 6, 12, and 18 months’ exposure to air and to flowing steam of 2000 psi at temperatures of 1100, 1200, 1350, and 1500 F. The effect of temperature and time of exposure on the adherence, thermal-shock resistance, thickness, structure, and chemical composition of the scales was investigated and the relative resistance to scaling of the various alloys evaluated.



Sign in / Sign up

Export Citation Format

Share Document