Real-time Light Transmittance Monitoring for Determining Polymerization Completeness of Conventional and Bulk Fill Dental Composites

2018 ◽  
Vol 43 (1) ◽  
pp. E19-E31 ◽  
Author(s):  
M Par ◽  
I Repusic ◽  
H Skenderovic ◽  
E Klaric Sever ◽  
D Marovic ◽  
...  

SUMMARY Objectives: To monitor the real-time changes in light transmittance during composite curing and to use transmittance data to determine the curing times required for a complete polymerization. Methods: Three conventional and three bulk fill composites were cured with two light-emitting diode curing units at layer thicknesses of 2 mm and 4 mm. The real-time light transmittance data were collected by a UV-Vis spectrometer in the wavelength range of 350-550 nm, plotted against time (t) and fitted to an exponential function f(t), whose first derivative ΔT(t) = df(t)/dt represented the rate of transmittance change. As the changing transmittance reflects structural changes that occur during polymerization, ΔT(t) > 0 was considered to indicate an ongoing polymerization, whereas ΔT(t) values approaching zero suggested a complete polymerization. This principle was used to determine times required for a complete polymerization (tcomplete) for each material/thickness/curing unit combination. Results: Light transmittance was significantly influenced by the material type, sample thickness, and curing unit, amounting to 2.9%-27.0% for the bulk fill and 0.7%-16.7% for the conventional composites. The values of tcomplete amounted to 15.3-23.3 seconds for the bulk fill composites at 2 mm, 20.2-33.3 seconds for the conventional composites at 2 mm, 26.9-42.1 seconds for the bulk fill composites at 4 mm, and 40.1-59.8 seconds for the conventional composites at 4 mm. Additionally, an exponential relationship was discovered between the light transmittance and tcomplete. Conclusions: Some of the tcomplete values considerably exceeded the curing times recommended by the manufacturers.

Author(s):  
Sandra J. Slayford ◽  
Barrie E. Frost

AbstractA device for measuring the flow, duration and volume characteristics of human puffing behaviour when smoking cigarettes is described. Cigarettes are smoked through a holder comprising a measured pressure drop across a critical orifice. The holder also contains a Light Emitting Diode (LED) and photodetector that measures light obscuration in order to estimate nicotine-free dry particulate matter (NFDPM, “tar”) delivery. All data are recorded on a puff-by-puff basis and displayed in real time. These NFDPM estimates are known as optical “tar” (OT), and are derived from the calibration of the OT measurement versus gravimetric NFDPM yields of cigarettes under a range of smoking regimes. In a test study, puff volumes from 20-80 mL were recorded to ± 6.0% of a pre-set volume, with an absolute error of 4.7 mL for an 80 mL volume drawn on a lit cigarette, and an average error of less than 2.0 mL across the range 20-80 mL. The relationship between NFDPM and OT was linear (R2 = 0.99) and accurate to ± 1.3 mg per cigarette over the range 1-23 mg per cigarette. The device provides an alternative to the widely used part filter methodology for estimating mouth level exposure with an added benefit that no further laboratory smoking replication or analysis is required. When used in conjunction with the part filter methodology, the puffing behaviour recorded can explain anomalies in the data while providing a second independent estimate.


Sensors ◽  
2019 ◽  
Vol 19 (5) ◽  
pp. 1208 ◽  
Author(s):  
Moh. Hasan ◽  
Md. Shahjalal ◽  
Mostafa Chowdhury ◽  
Yeong Jang

Research on electronic healthcare (eHealth) systems has increased dramatically in recent years. eHealth represents a significant example of the application of the Internet of Things (IoT), characterized by its cost effectiveness, increased reliability, and minimal human eff ort in nursing assistance. The remote monitoring of patients through a wearable sensing network has outstanding potential in current healthcare systems. Such a network can continuously monitor the vital health conditions (such as heart rate variability, blood pressure, glucose level, and oxygen saturation) of patients with chronic diseases. Low-power radio-frequency (RF) technologies, especially Bluetooth low energy (BLE), play significant roles in modern healthcare. However, most of the RF spectrum is licensed and regulated, and the effect of RF on human health is of major concern. Moreover, the signal-to-noise-plus-interference ratio in high distance can be decreased to a considerable extent, possibly leading to the increase in bit-error rate. Optical camera communication (OCC), which uses a camera to receive data from a light-emitting diode (LED), can be utilized in eHealth to mitigate the limitations of RF. However, OCC also has several limitations, such as high signal-blockage probability. Therefore, in this study, a hybrid OCC/BLE system is proposed to ensure efficient, remote, and real-time transmission of a patient’s electrocardiogram (ECG) signal to a monitor. First, a patch circuit integrating an LED array and BLE transmitter chip is proposed. The patch collects the ECG data according to the health condition of the patient to minimize power consumption. Second, a network selection algorithm is developed for a new network access request generated in the patch circuit. Third, fuzzy logic is employed to select an appropriate camera for data reception. Fourth, a handover mechanism is suggested to ensure efficient network allocation considering the patient’s mobility. Finally, simulations are conducted to demonstrate the performance and reliability of the proposed system.


Author(s):  
Dakui Feng ◽  
Xuanshu Chen ◽  
Hao Liu ◽  
Zhiguo Zhang ◽  
Xianzhou Wang

Submarine is usually equipped with two different control device arrangements, namely a cruciform and a X rudder configuration. In this paper, numerical simulations of the DARPA Suboff submarine and its retrofitted submarine with a X rudder configuration are presented. Turning simulations in model scale were studied to compare the turning abilities of the two different control device arrangements. The computations were performed with a house viscous CFD solver based on the conservative finite difference method. In the solver, RANS equation are solved coupled with six degrees of freedom (6DOF) solid body motion equations of the submarine in real time. The structured dynamic overlapping grids were used to simulate the real-time changes of the attitude of the submarine and the rotation of the rudder. The volume force method was used to replace the real propeller to realize the self-propelled movement of submarine. In the free running maneuvering simulations, the submarines move at the same initial velocity and rudder angle, restricted to the horizontal plane with four degrees of freedom (4DOF). Comparisons of the trajectory and kinematic parameters including relative turning radius and turning period between the two cases were presented in this paper. The results show that, compared with the cruciform rudder configuration, the X rudder configuration has obvious advantages for submarine in the turning abilities.


Sensors ◽  
2019 ◽  
Vol 19 (13) ◽  
pp. 2951 ◽  
Author(s):  
Daniel Carreres-Prieto ◽  
Juan T. García ◽  
Fernando Cerdán-Cartagena ◽  
Juan Suardiaz-Muro

Local administrations demand real-time and continuous pollution monitoring in sewer networks. Spectroscopy is a non-destructive technique that can be used to continuously monitor quality in sewers. Covering a wide range of wavelengths can be useful for improving pollution characterization in wastewater. Cost-effective and in-sewer spectrophotometers would contribute to accomplishing discharge requirements. Nevertheless, most available spectrometers are based on incandescent lamps, which makes it unfeasible to place them in a sewerage network for real-time monitoring. This research work shows an innovative calibration procedure that allows (Light-Emitting Diode) LED technology to be used as a replacement for traditional incandescent lamps in the development of spectrophotometry equipment. This involves firstly obtaining transmittance values similar to those provided by incandescent lamps, without using any optical components. Secondly, this calibration process enables an increase in the range of wavelengths available (working range) through a better use of the LED’s spectral width, resulting in a significant reduction in the number of LEDs required. Thirdly, this method allows important reductions in costs, dimensions and consumptions to be achieved, making its implementation in a wide variety of environments possible.


2010 ◽  
Vol 148 (2) ◽  
pp. 371-378 ◽  
Author(s):  
N. Ryškevič ◽  
S. Juršėnas ◽  
P. Vitta ◽  
E. Bakienė ◽  
R. Gaska ◽  
...  

2010 ◽  
Vol 9 (3) ◽  
Author(s):  
Douglas Michielin Sari ◽  
Rita de Cássia Duquia ◽  
Josué Martos ◽  
Prudêncio Willy Rodo Osinaga

The purpose of this investigation was to evaluate the flexural strength (FS) and modulus of elasticity (ME) of three microhybrid resins (Filtek Z250; Charisma; P60) and one submicrohybrid resin (Concept) using LED or halogen light polymerization. Twenty specimens (25x2x2 mm) per tested material were prepared and polymerized using a halogen or LED curing unit and stored in distilled water. FS and ME tests were performed on an Instron universal testing machine (0.75mm/min). ANOVA and multiple comparisons (SNK) showed that the two polymerization systems resulted in no significant differences (p>0.05) in the FS of Charisma and Filtek Z250. The two curing systems also produced similar results in the ME of Charisma, Concept and Filtek Z250. Significant differences were found in FS and ME, with the halogen curing light system showing better results than the LED system. The LED LCU systems did not exhibit a superior performance in our investigation of any of the composite resins, in terms of flexural strength and modulus of elasticity.


2020 ◽  
Author(s):  
Zhifang Liao ◽  
Peng Lan ◽  
Zhingning Liao ◽  
Yan Zhang ◽  
Shengzong Liu

Abstract Since the outbreak of COVID-19, many COVID-19 research studies have proposed different models for predicting trend of COVID-19. Among them, the prediction model based on mathematical epidemiology (SIR) is the most widely used, but most of these models are adapted in special situations based on various assumptions. In order to reflect the real-time trend of the epidemic in the process of infection for different areas, different policies and different epidemic diseases, a general adapted time- window based SIR model is proposed, which is characterized by introducing a time window mechanism for dynamic data analysis and using machine learning method predicts the Basic reproduction number R0 and the exponential growth rate of the epidemic. Multiple data sets of epidemic diseases are analyzed, and the numerical results showed that the framework can effectively measure the real-time changes of the parameters during the epidemic, and error rate of predicting the number of COVID-19 infections in a single day is within 5%


Sign in / Sign up

Export Citation Format

Share Document