scholarly journals Internal Structure of Large Size Vacuum-Cast Ingots

1961 ◽  
Vol 1 (3) ◽  
pp. 31-39
Author(s):  
Shinsaku Onodera ◽  
Yoshitaka Nakagawa ◽  
Noboru Hiraoka

The author had occasion to observe, many years ago, that the Bonito ( Thynnus pelamys , Cuv.) had a temperature of 99° of Fahr. when the surrounding medium was 80°·5,and that it, therefore, constituted an exception to the generally received rule that fishes are universally cold-blooded. Having found that the gills of the common Thunny of the Mediterranean ( Thynnus vulgaris , Cuv.) were supplied with nerves of unusual magnitude, that the heart of this latter fish was very powerful, and that its muscles were of a dark red colour, he was led to conjecture that it might, like the Bonito, be also warm-blooded; and this opinion is corroborated by the testimony of several intelligent fisher-men. The author endeavours to extend this analogy to other species of the same family, which, according to the reports of the fishermen of whom he made inquiries, have a high temperature, and in whose internal structure he noticed similar peculiarities as in the Thunny; namely, very large branchial nerves, furnished with ganglia of considerable size. In this respect he considers that in these fishes the branchial system of organs makes an approximation to the respiratory apparatus of the Mammalia, and that it probably contributes to the elevation of temperature, resulting from the more energetic respiration which he supposes to be exercised by these organs. He, however, thinks it not improbable that these fish may possess means of generating heat peculiar to themselves, and of which at present we have no adequate idea. He conceives that the situation of the kidneys, of which a considerable portion is even higher than the stomach, and posterior to the gills, and which are of large size, and well supplied with nerves and blood-vessels, may possibly act a part in the production of an elevated temperature; but, on the whole, he is disposed to ascribe the greatest share of this effect to the superior magnitude of the branchial nerves.


2018 ◽  
Vol 285 (1870) ◽  
pp. 20171938 ◽  
Author(s):  
Rachel Wood ◽  
Amelia Penny

The ability to encrust in order to secure and maintain growth on a substrate is a key competitive innovation in benthic metazoans. Here we describe the substrate growth dynamics, mode of biomineralization and possible affinity of Namapoikia rietoogensis , a large (up to 1 m), robustly skeletal, and modular Ediacaran metazoan which encrusted the walls of synsedimentary fissures within microbial–metazoan reefs. Namapoikia formed laminar or domal morphologies with an internal structure of open tubules and transverse elements, and had a very plastic, non-deterministic growth form which could encrust both fully lithified surfaces as well as living microbial substrates, the latter via modified skeletal holdfasts. Namapoikia shows complex growth interactions and substrate competition with contemporary living microbialites and thrombolites, including the production of plate-like dissepiments in response to microbial overgrowth which served to elevate soft tissue above the microbial surface. Namapoikia could also recover from partial mortality due to microbial fouling. We infer initial skeletal growth to have propagated via the rapid formation of an organic scaffold via a basal pinacoderm prior to calcification. This is likely an ancient mode of biomineralization with similarities to the living calcified demosponge Vaceletia. Namapoikia also shows inferred skeletal growth banding which, combined with its large size, implies notable individual longevity. In sum, Namapoikia was a large, relatively long-lived Ediacaran clonal skeletal metazoan that propagated via an organic scaffold prior to calcification, enabling rapid, effective and dynamic substrate occupation and competition in cryptic reef settings. The open tubular internal structure, highly flexible, non-deterministic skeletal organization, and inferred style of biomineralization of Namapoikia places probable affinity within total-group poriferans.


Author(s):  
R. A. Ricks ◽  
Angus J. Porter

During a recent investigation concerning the growth of γ' precipitates in nickel-base superalloys it was observed that the sign of the lattice mismatch between the coherent particles and the matrix (γ) was important in determining the ease with which matrix dislocations could be incorporated into the interface to relieve coherency strains. Thus alloys with a negative misfit (ie. the γ' lattice parameter was smaller than the matrix) could lose coherency easily and γ/γ' interfaces would exhibit regularly spaced networks of dislocations, as shown in figure 1 for the case of Nimonic 115 (misfit = -0.15%). In contrast, γ' particles in alloys with a positive misfit could grow to a large size and not show any such dislocation arrangements in the interface, thus indicating that coherency had not been lost. Figure 2 depicts a large γ' precipitate in Nimonic 80A (misfit = +0.32%) showing few interfacial dislocations.


Author(s):  
H.W. Deckman ◽  
B.F. Flannery ◽  
J.H. Dunsmuir ◽  
K.D' Amico

We have developed a new X-ray microscope which produces complete three dimensional images of samples. The microscope operates by performing X-ray tomography with unprecedented resolution. Tomography is a non-invasive imaging technique that creates maps of the internal structure of samples from measurement of the attenuation of penetrating radiation. As conventionally practiced in medical Computed Tomography (CT), radiologists produce maps of bone and tissue structure in several planar sections that reveal features with 1mm resolution and 1% contrast. Microtomography extends the capability of CT in several ways. First, the resolution which approaches one micron, is one thousand times higher than that of the medical CT. Second, our approach acquires and analyses the data in a panoramic imaging format that directly produces three-dimensional maps in a series of contiguous stacked planes. Typical maps available today consist of three hundred planar sections each containing 512x512 pixels. Finally, and perhaps of most import scientifically, microtomography using a synchrotron X-ray source, allows us to generate maps of individual element.


Author(s):  
Leo Barish

Although most of the wool used today consists of fine, unmedullated down-type fibers, a great deal of coarse wool is used for carpets, tweeds, industrial fabrics, etc. Besides the obvious diameter difference, coarse wool fibers are often medullated.Medullation may be easily observed using bright field light microscopy. Fig. 1A shows a typical fine diameter nonmedullated wool fiber, Fig. IB illustrates a coarse fiber with a large medulla. The opacity of the medulla is due to the inability of the mounting media to penetrate to the center of the fiber leaving air pockets. Fig. 1C shows an even thicker fiber with a very large medulla and with very thin skin. This type of wool is called “Kemp”, is shed annually or more often, and corresponds to guard hair in fur-bearing animals.


Author(s):  
H. Weiland ◽  
D. P. Field

Recent advances in the automatic indexing of backscatter Kikuchi diffraction patterns on the scanning electron microscope (SEM) has resulted in the development of a new type of microscopy. The ability to obtain statistically relevant information on the spatial distribution of crystallite orientations is giving rise to new insight into polycrystalline microstructures and their relation to materials properties. A limitation of the technique in the SEM is that the spatial resolution of the measurement is restricted by the relatively large size of the electron beam in relation to various microstructural features. Typically the spatial resolution in the SEM is limited to about half a micron or greater. Heavily worked structures exhibit microstructural features much finer than this and require resolution on the order of nanometers for accurate characterization. Transmission electron microscope (TEM) techniques offer sufficient resolution to investigate heavily worked crystalline materials.Crystal lattice orientation determination from Kikuchi diffraction patterns in the TEM (Figure 1) requires knowledge of the relative positions of at least three non-parallel Kikuchi line pairs in relation to the crystallite and the electron beam.


Author(s):  
Patricia G. Calarco ◽  
Margaret C. Siebert

Visualization of preimplantation mammalian embryos by electron microscopy is difficult due to the large size of the ircells, their relative lack of internal structure, and their highly hydrated cytoplasm. For example, the fertilized egg of the mouse is a single cell of approximately 75μ in diameter with little organized cytoskelet on and apaucity ofor ganelles such as endoplasmic reticulum (ER) and Golgi material. Thus, techniques that work well on tissues or cell lines are often not adaptable to embryos at either the LM or EM level.Over several years we have perfected techniques for visualization of mammalian embryos by LM and TEM, SEM and for the pre-embedding localization of antigens. Post-embedding antigenlocalization in thin sections of mouse oocytes and embryos has presented a more difficult challenge and has been explored in LR White, LR Gold, soft EPON (after etching of sections), and Lowicryl K4M. To date, antigen localization has only been achieved in Lowicryl-embedded material, although even with polymerization at-40°C, the small ER vesicles characteristic of embryos are unrecognizable.


Author(s):  
K. Ohi ◽  
M. Mizuno ◽  
T. Kasai ◽  
Y. Ohkura ◽  
K. Mizuno ◽  
...  

In recent years, with electron microscopes coming into wider use, their installation environments do not necessarily give their performance full play. Their environmental conditions include air-conditioners, magnetic fields, and vibrations. We report a jointly developed entirely new vibration isolator which is effective against the vibrations transmitted from the floor.Conventionally, large-sized vibration isolators which need the digging of a pit have been used. These vibration isolators, however, are large present problems of installation and maintenance because of their large-size.Thus, we intended to make a vibration isolator which1) eliminates the need for changing the installation room2) eliminates the need of maintenance and3) are compact in size and easily installable.


2003 ◽  
Vol 34 (4) ◽  
pp. 219-226 ◽  
Author(s):  
Bart Duriez ◽  
Claudia Appel ◽  
Dirk Hutsebaut

Abstract: Recently, Duriez, Fontaine and Hutsebaut (2000) and Fontaine, Duriez, Luyten and Hutsebaut (2003) constructed the Post-Critical Belief Scale in order to measure the two religiosity dimensions along which Wulff (1991 , 1997 ) summarized the various possible approaches to religion: Exclusion vs. Inclusion of Transcendence and Literal vs. Symbolic. In the present article, the German version of this scale is presented. Results obtained in a heterogeneous German sample (N = 216) suggest that the internal structure of the German version fits the internal structure of the original Dutch version. Moreover, the observed relation between the Literal vs. Symbolic dimension and racism, which was in line with previous studies ( Duriez, in press ), supports the external validity of the German version.


2012 ◽  
Vol 28 (1) ◽  
pp. 25-31 ◽  
Author(s):  
Paula Elosua ◽  
Alicia López-Jáuregui

In this study the Eating Disorder Inventory-3 was adapted to Spanish and analyzed the internal psychometric properties of the test in a clinical sample of females with eating disorders. The results showed a high internal consistency of the scores as well as high temporal stability. The factor structure of the scale composites was analyzed using confirmatory factor analysis. The results supported the existence of a second-order structure beyond the psychological composites. The second-order factor showed high correlation with the factor related to eating disorders. Overall, the Spanish version of the EDI-3 showed good psychometric qualities in terms of internal consistency, temporal stability and internal structure.


Sign in / Sign up

Export Citation Format

Share Document