scholarly journals Influence Of The Large Flood On The Element Composition Of Fluvisols In The Amur River Valley

2020 ◽  
Vol 13 (2) ◽  
pp. 52-64
Author(s):  
Alexander V. Martynov

Floodplain soils function as long-lasting stock or source of different substances, including pollutants. The main factor determining biochemical processes in fluvisols is flooding. Global climate change, which is causing more frequent and massive floods, is urging us to assess the potential environmental risks and create appropriate environmental management strategies. This study was performed to estimate the impact of a heavy flood on the total content of major elements and both total and mobile trace elements in fluvisols of one of the longest rivers in the world, the Amur. The study was conducted in field conditions by sampling from the same soil profiles before and after the flood. As a result, 10 major and 42 trace elements were distinguished. Major-element composition was determined with X-ray fluorescent method, trace-element composition - with the inductive coupled plasma mass spectroscopy. Maximum decrease of concentration was determined for CaO, MnO, P2O5 (up to 60%) and Sr, Cd, Ba, Tl and Pb (up to 40%). Significant increase was in concentration of Ni, Cu, and Mo (up to 160%). Among mobile trace elements, increase was observed in concentration of Sc, Ni and Th (up to 400%). With the correlation analysis, it was also established that the main causes of changes in elemental composition of the soils were decrease of pH, development of redox environment and washing out of organic matter. The main factor determining the influence of the flood on fluvisols was floodplain relief, which affected the length of the inundation, flood water velocity and the way allochthonic matter retained.

2020 ◽  
Vol 105 (6) ◽  
pp. 820-832 ◽  
Author(s):  
Aleksandr S. Stepanov ◽  
Leonid V. Danyushevsky ◽  
Ross R. Large ◽  
Indrani Mukherjee ◽  
Irina A. Zhukova

Abstract Pyrite is a common mineral in sedimentary rocks and is the major host for many chalcophile trace elements utilized as important tracers of the evolution of the ancient hydrosphere. Measurement of trace element composition of pyrite in sedimentary rocks is challenging due to fine-grain size and intergrowth with silicate matrix and other sulfide minerals. In this contribution, we describe a method for calculation of trace element composition of sedimentary pyrite from time-resolved LA-ICP-MS data. The method involves an analysis of both pyrite and pyrite-free sediment matrix, segmentation of LA-ICP-MS spectra, normalization to total, regression analysis of dependencies between the elements, and calculation of normalized composition of the mineral. Sulfur is chosen as an explanatory variable, relative to which all regressions are calculated. The S content value used for calculation of element concentrations from the regressions is calculated from the total, eliminating the need for independent constraints. The algorithm allows efficient measurement of concentrations of multiple chalcophile trace elements in pyrite in a wide range of samples, including quantification of detection limits and uncertainties while excluding operator bias. The data suggest that the main sources of uncertainties in pyrite composition are sample heterogeneity and counting statistics for elements of low abundance. The analysis of regression data of time-resolved LA-ICP-MS measurements could provide new insights into the geochemistry of the sedimentary rocks and minerals. It allows quantification of ratios of elements that do not have reference material available (such as Hg) and provides estimates on the content of non-sulfidic Fe in the silicate matrix. Regression analysis of the mixed LA-ICP-MS signal could be a powerful technique for deconvolution of phase compositions in complex multicomponent samples.


2016 ◽  
Vol 154 (1) ◽  
pp. 68-86 ◽  
Author(s):  
PRANJIT HAZARIKA ◽  
DEWASHISH UPADHYAY ◽  
KAMAL LOCHAN PRUSETH

AbstractMica pegmatites from the Bihar Mica Belt contain three distinct generations of tourmaline. The major-element composition, substitution vectors and trajectories within each group are different, which indicates that the three types of tourmalines are not a part of one evolutionary series. Rather, the differences in their chemistries as well their mutual microtextural relations, can be best explained by growth of tourmaline from pegmatitic melts followed by episodic re-equilibration during discrete geological events. The euhedral, coarse-grained brown type I tourmaline cores have relatively high Ca, Mg (XMgc. 0.37) and Al with correlated variation in Sr, Sc, Ti, Zr, Y, Cr, Pb and Rare Earth elements (REEs). They are inferred to have crystallized from pegmatitic melts. Monazites included within these tourmalines give chemical ages of 1290−1242 Ma interpreted to date the crystallization of the pegmatitic tourmaline. The bluish type II and greyish type III tourmalines with low Ca and Mg contents (XMg = 0.16−0.27) and high Zn, Sn, Nb, Ta and Na, formed by pseudomorphic partial replacement of the pegmatitic tourmaline via fluid-mediated coupled dissolution–reprecipitation, are ascribed to a hydrothermal origin. The ages obtained from monazites included in these tourmalines indicate two alteration events at c. 1100 Ma and c. 950 Ma. The correlated variation of Ca, Mg and Fe and the trace elements Sr, Sn, Sc, Zn and REE within the tourmalines indicates that the trace-element concentrations of tourmaline are controlled not only by the fluid chemistry but also by coupled substitutions with major-element ions.


2001 ◽  
Vol 65 (2) ◽  
pp. 249-276 ◽  
Author(s):  
G. Tischendorf ◽  
H.-J. Förster ◽  
B. Gottesmann

AbstractMore than 19,000 analytical data mainly from the literature were used to study statistically the distribution patterns of F and the oxides of minor and trace elements (Ti, Sn, Sc, V, Cr, Ga, Mn, Co, Ni, Zn, Sr, Ba, Rb, Cs) in trioctahedral micas of the system phlogopite-annite/siderophyllite-polylithionite (PASP), which is divided here into seven varieties, whose compositional ranges are defined by the parametermgli(= octahedral Mg minus Li). Plots of trace-element contentsvs.mglireveal that the elements form distinct groups according to the configuration of their distribution patterns. Substitution of most of these elements was established as a function ofmgli. Micas incorporate the elements in different abundances of up to four orders of magnitude between the concentration highs and lows in micas of ‘normal’ composition. Only Zn, Sr and Sc are poorly correlated tomgli. In compositional extremes, some elements (Zn, Mn, Ba, Sr, Cs, Rb) may be enriched by up to 2–3 orders of magnitude relative to their mean abundance in the respective mica variety. Mica/melt partition coefficients calculated for Variscan granites of the German Erzgebirge demonstrate that trace-element partitioning is strongly dependent on the position of the mica in the PASP system, which has to be considered in petrogenetic modelling.This review indicates that for a number of trace elements, the concentration ranges are poorly known for some of the mica varieties, as they are for particular host rocks (i.e. igneous rocks of A-type affiliation). The study should help to develop optimal analytical strategies and to provide a tool to distinguish between micas of ‘normal’ and ‘abnormal’ trace-element composition.


2019 ◽  
Vol 486 (5) ◽  
pp. 613-619
Author(s):  
M. Yu. Semenov ◽  
V. A. Snytko ◽  
Yu. M. Semenov ◽  
A. V. Silaev ◽  
L. N. Semenova

The metal composition of water and bottom sediments of southern Lake Baikal tributaries was studied and the water migration coefficients for micro- and trace elements were calculated. The map showing the study area divided into zones according to their ability to provide the certain water quality was drawn. The significant differences in mineralization, macro- and trace element composition between Lake Baikal water and tributary waters were found out. It was shown that values of water migration coefficients calculated for macro elements are similar in southern and main tributaries whereas coefficient values calculated for trace elements are quite different. This is due to dissolved matter sources such as rocks and deep ground waters which chemical composition is not typical for landscapes of Lake Baikal basin. The contribution of southern tributaries to macro element composition of lake water is between 7 and 15%, whereas tributaries contribution to trace element composition can hardly be evaluated because of higher element concentrations in riverine waters. The lower trace element concentrations in lake water with respect to riverine one is due to trace element migration in the form of complex organic compounds: long water residence time in lake favors to organic compounds decay by means of microbial- and photo-degradation followed by metal precipitation.


2020 ◽  
pp. 74-88
Author(s):  
S.V. Pribavkin ◽  
N.S. Borodina ◽  
M.V. Chervyakovskaya

The Murzinka granite area (Central Urals), which combines Murzinka granite pluton and underlying rocks of the Murzinka-Adui metamorphic complex, exhibits an evident wetrending geochemical zonation of magmatism with increasing of Rb, Li, Nb and Ta contents and decreasing ba and Sr contents and K/Rb, zr/Hf and Nb/Ta ratios from vein granites of the Yuzhakovo complex to granites of the Vatikha complex and further to granites of the Murzinka complex (Fershtater et al., 2019). To develop the ideas about geochemical zonation of the Murzinka granite magmatism, as well as about the role of gneisses of the Murzinka-Adui metamorphic complex in the formation of granites, we studied the distribution of trace elements in biotite and feldspars of gneisses and granites. Biotite shows an increase in Li, Rb, Cs, Nb, Ga, zn, Mn, Sc, Sn and Tl contents and a decrease in V, Cr, Co, Ni, Y, zr and ba contents from vein biotites of the Yuzhakovo granites to two-mica granites of the Murzinka complex. The composition of feldspars also changes in this direction: plagioclase is enriched in Li, Rb, Cs, be, zn and depleted in Sr, ba, Ga and Pb and K-feldspar is enriched in Rb and depleted in Sr and ba. The varying trace element composition of rock-forming minerals of gneisses and granites is explained by We-trending change in the composition of a crustal protolith, as well as the formation conditions of granites. Figures 6. Tables 4. References 17.


Minerals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 879
Author(s):  
Elżbieta Rolka ◽  
Mirosław Wyszkowski

The research was based on a pot experiment in which the impact of increasing Cd, Zn and Pb doses on the content of available trace elements in soil was compared. Seven series of trials were designed: 1 (Cd), 2 (Pb), 3 (Zn), 4 (Cd + Pb), 5 (Cd + Zn), 6 (Pb + Zn), 7 (Cd + Pb + Zn). Aside from the control one (without the metals), three increasing levels of contamination were considered within each series. Mobile forms of trace elements (Cd, Pb, Zn, Fe, Mn, Cu, Ni, Co, and Cr) in soil were determined, in addition to which selected physicochemical soil properties—reaction (pH), salinity (EC), hydrolytic acidity (HAC), total exchange bases (TEB)—were identified while cation exchange capacity (CEC), base saturation (BS) and availability factor (AF) were calculated. The application of Cd and Pb to soil resulted in an increase in the share of potentially available forms of these metals in their total content. The availability factor (AF) in the pots polluted with these metals was higher than in the control, in the range 17.5–20.0% for Cd, and 62.8–71.5% for Pb. In turn, the share of Zn mobile forms was comparable in most experimental objects, oscillating around 30%. Moreover, addition to soil of Cd, Pb and Zn usually caused a significant decrease in the content of available forms of Fe, Mn and Cu, and resulted in significantly higher content of available forms of Cr in the soil.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Niklas Leicher ◽  
Biagio Giaccio ◽  
Giovanni Zanchetta ◽  
Roberto Sulpizio ◽  
Paul G. Albert ◽  
...  

AbstractTephrochronology relies on the availability of the stratigraphical, geochemical and geochronological datasets of volcanic deposits, three preconditions which are both often only fragmentary accessible. This study presents the tephrochronological dataset from the Lake Ohrid (Balkans) sediment succession continuously reaching back to 1.36 Ma. 57 tephra layers were investigated for their morphological appearance, geochemical fingerprint, and (chrono-)stratigraphic position. Glass fragments of tephra layers were analyzed for their major element composition using Energy-Dispersive-Spectroscopy and Wavelength-Dispersive Spectroscopy and for their trace element composition by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry. Radiometric dated equivalents of 16 tephra layers and orbital tuning of geochemical proxy data provided the basis for the age-depth model of the Lake Ohrid sediment succession. The age-depth model, in turn, provides ages for unknown or undated tephra layers. This dataset forms the basis for a regional stratigraphic framework and provides insights into the central Mediterranean explosive volcanic activity during the last 1.36 Ma.


2019 ◽  
Vol 76 (6) ◽  
pp. 1524-1542
Author(s):  
Melissa A Haltuch ◽  
Z Teresa A’mar ◽  
Nicholas A Bond ◽  
Juan L Valero

Abstract US West Coast sablefish are economically valuable, with landings of 11.8 million pounds valued at over $31 million during 2016, making assessing and understanding the impact of climate change on the California Current (CC) stock a priority for (1) forecasting future stock productivity, and (2) testing the robustness of management strategies to climate impacts. Sablefish recruitment is related to large-scale climate forcing indexed by regionally correlated sea level (SL) and zooplankton communities that pelagic young-of-the-year sablefish feed upon. This study forecasts trends in future sablefish productivity using SL from Global Climate Models (GCMs) and explores the robustness of harvest control rules (HCRs) to climate driven changes in recruitment using management strategy evaluation (MSE). Future sablefish recruitment is likely to be similar to historical recruitment but may be less variable. Most GCMs suggest that decadal SL trends result in recruitments persisting at lower levels through about 2040 followed by higher levels that are more favorable for sablefish recruitment through 2060. Although this MSE suggests that spawning biomass and catches will decline, and then stabilize, into the future under both HCRs, the sablefish stock does not fall below the stock size that leads to fishery closures.


2013 ◽  
Vol 71 (8) ◽  
pp. 2208-2220 ◽  
Author(s):  
André E. Punt ◽  
Teresa A'mar ◽  
Nicholas A. Bond ◽  
Douglas S. Butterworth ◽  
Carryn L. de Moor ◽  
...  

Abstract The ability of management strategies to achieve the fishery management goals are impacted by environmental variation and, therefore, also by global climate change. Management strategies can be modified to use environmental data using the “dynamic B0” concept, and changing the set of years used to define biomass reference points. Two approaches have been developed to apply management strategy evaluation to evaluate the impact of environmental variation on the performance of management strategies. The “mechanistic approach” estimates the relationship between the environment and elements of the population dynamics of the fished species and makes predictions for population trends using the outputs from global climate models. In contrast, the “empirical approach” examines possible broad scenarios without explicitly identifying mechanisms. Many reviewed studies have found that modifying management strategies to include environmental factors does not improve the ability to achieve management goals much, if at all, and only if the manner in which these factors drive the system is well known. As such, until the skill of stock projection models improves, it seems more appropriate to consider the implications of plausible broad forecasts related to how biological parameters may change in the future as a way to assess the robustness of management strategies, rather than attempting specific predictions per se.


Clay Minerals ◽  
2014 ◽  
Vol 49 (1) ◽  
pp. 53-62 ◽  
Author(s):  
A. Papadopoulos ◽  
K. Giouri ◽  
E. Tzamos ◽  
A. Filippidis ◽  
S. Stoulos

AbstractSeven commercial cosmetic clays having different colour (white, green, pink and red) available in pharmacies and herbalists’ shops in the Greek market have been examined for their trace element concentrations (Ag, As, Ba, Be, Cd, Ce, Co, Cr, Cs, Cu, Ga, Hf, Hg, La, Mo, Ni, Pb, Rb, Sb, Sc, Se, Sr, Tl, V, Y, Zn and Zr). According to EC Regulation 1223/2009 the presence of As, Be, Cd, Cr, Hg, Ni, P, Pb, Sb, Se, Te, Tl, Zr and their compounds is prohibited in cosmetics. The most abundant trace elements in the white clays were P (330 μg/g), Pb (220 μg/g) and Zr (11 μg/g) and for the green clays were P (1250 μg/g), As (43 μg/g), Cr (31 μg/g), Pb (30 μg/g) and Ni (23 μg/g). Red and pink clays had lower concentrations of these elements than their white and green counterparts. The green clays are three times enriched in As and the kaolinite-rich white clays are nine times enriched in Pb compared to the Average Shale. The main mineral phase in the white clays is either kaolinite or calcite, in green clays smectite, in pink clay kaolinite and talc and in red clays it is vermiculite. The specific activities of 238U, 226Ra, 228Ra, 228Th and 40K were determined by γ-ray spectroscopy. The kaolinite-rich white clays are more enriched in 238U-series radionuclides (238U and 226Ra) than the smectitic green clays. In contrast, the green clays were more enriched in 232Th-series radionuclides (228Ra and 228Th) and 40K than the white clays.


Sign in / Sign up

Export Citation Format

Share Document