scholarly journals Carbapenem resistant Escherichia coli and Pseudomonas aeruginosa in captive blackbucks (Antilope cervicapra) and leopards (Panthera pardus) from India

2021 ◽  
Vol 91 (1) ◽  
pp. 73-80
Author(s):  
Obli R. Vinodh Kumar ◽  
◽  
Bhoj R. Singh ◽  
Mathesh Karikalan ◽  
Shikha Tamta ◽  
...  

The study aimed to investigate the occurrence of carbapenem resistant E. coli and P. aeruginosa in apparently healthy, captive blackbucks and leopards of India. Faecal samples of blackbucks (n = 7) and leopards (n = 7) were processed to isolate carbapenem resistant E. coli (CRE) and P. aeruginosa (CRP). Forty (leopards n = 26; blackbuck n = 14) E. coli and two P. aeruginosa (blackbuck n = 2) samples were isolated from the faecal samples (n = 14). Eleven carbapenem resistant isolates were recovered, of which 10 were CRE and one was CRP. The minimum inhibitory concentration (MIC) was determined for meropenem for carbapenem resistant isolates and was between 8 and 64 μg/mL. All the CRE and CRP were phenotypically multidrug resistant, and six CRE were extended-spectrum beta-lactamases (ESBL) producers. On genotypic screening, seven CRE and one CRP were positive for the blaNDM carbapenemase gene. Efflux pump-mediated carbapenem resistance was noticed in four CRE isolates (36.4%, 4/11). Of the six ESBL producing CRE, four isolates carried blaCTX-M-1 genes. The CRE isolates also harbored blaTEM-1, blaAmpC, qnrA, qnrB, qnrS, tetA, tetB and sul1 resistance genes. On Shiga toxin virulence screening, Stx1, Stx2 genes were detected in two and one isolates, respectively. Plasmid typing of CRE revealed that the blaNDM genes were carried on an Incl1 plasmid. The plasmid multilocus sequence typing (pMLST) of the isolates showed the Sequence Type (ST) 297. The occurrence of carbapenem resistance bacteria in captive wildlife should be a major public health priority.

Antibiotics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 447
Author(s):  
Barbara Kot ◽  
Agata Grużewska ◽  
Piotr Szweda ◽  
Jolanta Wicha ◽  
Urszula Parulska

The aim of this study was to determine antibiotic resistance patterns and the prevalence of uropathogenes causing urinary tract infections (UTIs) in patients hospitalized in January–June 2020 in central Poland. Antimicrobial susceptibility testing was performed using the disk-diffusion method. Escherichia coli (52.2%), Klebsiella pneumoniae (13.7%), Enterococcus faecalis (9.3%), E. faecium (6.2%), and Proteus mirabilis (4,3%) were most commonly isolated from urine samples. E. coli was significantly more frequent in women (58.6%) (p = 0.0089) and in the age group 0–18, while K. pneumoniae was more frequent in men (24.4%) (p = 0.0119) and in individuals aged 40–60 and >60. Gram-negative species showed resistance to ampicillin. K. pneumoniae were resistant to amoxicillin plus clavulanic acid (75.0%), piperacillin plus tazobactam (76.2%), cefotaxime (76.2%), cefuroxime (81.0%), ciprofloxacin (81.0%), and trimethoprim plus sulphamethoxazole (81.0%). Carbapenems were effective against all E. coli and P. mirabilis. Some K. pneumoniae (13.6%) produced metallo-β-lactamases (MBLs). E. coli (22.6%), K. pneumoniae (81.8%), and all E. faecium were multidrug-resistant (MDR). Some E. coli (26.2%), K. pneumoniae (63.6%), and P. mirabilis (14.3%) isolates produced extended-spectrum beta-lactamases (ESBL). Vancomycin-resistant E. faecium was also found. This study showed that the possibilities of UTIs therapy using available antibiotics become limited due to the increasing number of antibiotic-resistant uropathogens.


Author(s):  
Şeyda Şilan Okalin ◽  
Ayşe Nur Sarı Kaygısız ◽  
Mahmut Cem Ergon ◽  
İbrahim Mehmet Ali Öktem

Objective: In recent years, increasing carbapenem resistance of Enterobacterales bacteria limits treatment options, considerably. The main mechanism of this resistance is the production of carbapenemase enzymes. The aim of this study is to determine carbapenemase gene types in Enterobacterales isolates from our hospitalized patients and assess the clonal associations of the isolates with KPC gene. Method: A total of 48 clinical Enterobacterales isolates resistant to at least one carbapeneme and received between January 2019 and March 2019 were included in the study. Sample types were consisted of urine, blood, tracheal aspirate, wound and sputum. Of these isolates, three were Escherichia coli while 45 were Klebsiella pneumoniae. Types of carbapenemases were investigated by polymerase chain reaction, using specific primers for VIM, IMP, NDM, KPC and OXA-48 genes. PFGE was performed to determine the clonal associations between blaKPC positive K. pnemoniae isolates. Results: According to the results, blaOXA-48 (n=2) and blaKPC (n=1) were found to be present among E. coli isolates. Regarding 45 K. pneumoniae isolates; only blaOXA-48 and only blaNDM were present in 30 and two isolates, respectively. Seven K. pneumoniae isolates were found positive for both blaOXA-48 and blaNDM. Remaining K. pneumoniae isolates (n=6) harboured only blaKPC. None of the isolates were positive for blaIMP and blaVIM. PFGE analysis showed four isolates had the same pulsotype (A), while two had different pulsotypes (B-C). Conclusion: To our knowledge, this is the first report of KPC gene isolated in Dokuz Eylul University Hospital.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jie Feng ◽  
Qian Xiang ◽  
Jiangang Ma ◽  
Pei Zhang ◽  
Kun Li ◽  
...  

The emergence and dissemination of carbapenem-resistant Enterobacteriaceae (CRE) is a growing concern to animal and public health. However, little is known about the spread of CRE in food and livestock and its potential transmission to humans. To identify CRE strains from different origins and sources, 53 isolates were cultured from 760 samples including retail meat products, patients, and porcine excrement. Antimicrobial susceptibility testing was carried out, followed by phylogenetic typing, whole-genome sequencing, broth mating assays, and plasmids analyses. Forty-three Escherichia coli, nine Klebsiella pneumoniae, and one Enterobacter cloacae isolates were identified, each exhibiting multidrug-resistant phenotypes. Genetically, the main sequence types (STs) of E. coli were ST156 (n = 7), ST354 (n = 7), and ST48 (n = 7), and the dominant ST of K. pneumoniae is ST11 (n = 5). blaNDM–5 (n = 40) of E. coli and blaKPC–2 (n = 5) were the key genes that conferred carbapenem resistance phenotypes in these CRE strains. Additionally, the mcr-1 gene was identified in 17 blaNDM-producing isolates. The blaNDM–5 gene from eight strains could be transferred to the recipients via conjugation assays. Two mcr-1 genes in the E. coli isolates could be co-transferred along with the blaNDM–5 genes. IncF and IncX3 plasmids have been found to be predominantly associated with blaNDM gene in these strains. Strains isolated in our study from different sources and regions tend to be concordant and overlap. CRE strains from retail meat products are a reservoir for transition of CRE strains between animals and humans. These data also provide evidence of the dissemination of CRE strains and carbapenem-resistant genes between animal and human sources.


2021 ◽  
Vol 10 (14) ◽  
pp. 1039-1041
Author(s):  
Swathi Gurajala ◽  
Sandeep Kumar Tipparthi ◽  
Rajkumar H.R.V.

Bacteria develop antimicrobial drug resistance through several mechanisms, the common one being the production of enzymes. As the number of antibiotics discovered is in notable numbers in the past few years, it is important to preserve high-end antibiotics for the treatment of multidrug-resistant organisms (MDROs) infections, by appropriate use of antibiotics. A study was conducted to record prevalence, phenotypic and genotypic characters of MDROs in our hospital, with reference to carbapenem resistance. 200 multidrug-resistant clinical isolates were collected in 6 months. Carbapenem-resistant organisms were detected phenotypically confirmed for the production of carbapenemases by modified Hodge test (MHT) and genotypic detection was done by a multiplex polymerase chain reaction (PCR) assay for the five most predominant carbapenemases (bla NDM-1, bla OXA-48 , bla VIM, bla IMP, bla KPC). The isolates consisted of E. coli (53 %) followed by K. pneumoniae (30 %), P. aeruginosa (13 %), and acinetobacter spp (4 %). Among these, 40 (20 %) isolates were carbapenem-resistant. Of these 40, 27 (67.5 %) showed an increase in zone size by the MHT, suggestive of metallo-beta-lactamase (MBL) mediated carbapenem resistance and about 32 (80 %) isolates were found to contain at least one carbapenemase gene. bla NDM-1 accounted for 37.5 % (12 / 32) of the isolates and was the most predominant one followed by bla OXA-48 [28 % (9 / 32)]. 22 % (7 / 32) of the isolates had one or more carbapenemase genes. Identifying the mechanisms of resistance of pathogens is important to implement strict infection prevention and control measures in the hospital to prevent the transmission of the resistant pathogens. KEY WORDS Multidrug-Resistant Bacteria, Bla NDM-1 Gene, Bla OXA-48 Gene, Carbapenem Resistance, Carbapenem Resistant Organisms.


2017 ◽  
Vol 22 (31) ◽  
Author(s):  
Tommaso Giani ◽  
Alberto Antonelli ◽  
Mariasofia Caltagirone ◽  
Carola Mauri ◽  
Jessica Nicchi ◽  
...  

Extended-spectrum beta-lactamases (ESBLs), AmpC-type beta-lactamases (ACBLs) and carbapenemases are among the most important resistance mechanisms in Enterobacteriaceae. This study investigated the presence of these resistance mechanisms in consecutive non-replicate isolates of Escherichia coli (n = 2,352), Klebsiella pneumoniae (n = 697), and Proteus mirabilis (n = 275) from an Italian nationwide cross-sectional survey carried out in October 2013. Overall, 15.3% of isolates were non-susceptible to extended-spectrum cephalosporins but susceptible to carbapenems (ESCR-carbaS), while 4.3% were also non-susceptible to carbapenems (ESCR-carbaR). ESCR-carbaS isolates were contributed by all three species, with higher proportions among isolates from inpatients (20.3%) but remarkable proportions also among those from outpatients (11.1%). Most ESCR-carbaS isolates were ESBL-positive (90.5%), and most of them were contributed by E. coli carrying bla CTX-M group 1 genes. Acquired ACBLs were less common and mostly detected in P. mirabilis. ESCR-carbaR isolates were mostly contributed by K. pneumoniae (25.1% and 7.7% among K. pneumoniae isolates from inpatients and outpatients, respectively), with bla KPC as the most common carbapenemase gene. Results showed an increasing trend for both ESBL and carbapenemase producers in comparison with previous Italian surveys, also among outpatients.


Author(s):  
Rafael Cantón ◽  
◽  
Elena Loza ◽  
Ricardo M. Arcay ◽  
Emilia Cercenado ◽  
...  

Objective. To analyse the susceptibility to ceftolozane-tazobactam and comparators in Enterobacterales and Pseudomonas aeruginosa isolates recovered from intraabdominal (IAI), urinary (UTI), respiratory (RTI) and bloodstream infection (BSI) in the SMART (Study for Monitoring Antimicrobial Resistance Trends) study. Methods. The susceptibility of 5,351 isolates collected in 11 Spanish hospitals (2016-2018) were analysed (EUCAST-2020 criteria) by broth microdilution and were phenotypically studied for the presence of extended-spectrum beta-lactamases (ESBL). Ceftolozane-tazobactam and/or carbapenem resistant isolates were genetically characterized for ESBL and carbapenemases. Results. Escherichia coli was the most frequent pathogen (49.3% IAI, 54.9% UTI, 16.7% RTI and 50% BSI), followed by Klebsiella pneumoniae (11.9%, 19.1%, 13.1% and 15.4%, respectively). P. aeruginosa was isolated in 9.3%, 5.6%, 32% and 9%, respectively. The frequency of isolates with ESBLs (2016-2017) was: 30.5% K. pneumoniae, 8.6% E. coli, 2.3% Klebsiella oxytoca and 0.7% Proteus mirabilis. Ceftolozane-tazobactam was very active against non-ESBL-(99.3% susceptible) and ESBL-(95.2%) producing E. coli being less active against K. pneumoniae (98% and 43.1%, respectively) isolates. CTX-M-15 was the most prevalent ESBL in E. coli (27.5%) and K. pneumoniae (51.9%) frequently associated with OXA-48-like carbapenemase. Overall, 93% of P. aeruginosa isolates were susceptible to ceftolozane-tazobactam, preserving this activity (>75%) in isolates resistant to other beta-lactams except in those resistant to meropenen or ceftazidime-avibactam. GES-5, PER-1, VIM-1/2 were the most prevalent enzymes in isolates resistant to ceftolozane-tazobactam. Conclusions. Ceftolozane-tazobactam showed high activity rates against isolates recovered in the SMART study although it was affected in K. pneumoniae and P. aeruginosa isolates with ESBL and/or carbapenemases.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Kotsoana Peter Montso ◽  
Sicelo Beauty Dlamini ◽  
Ajay Kumar ◽  
Collins Njie Ateba

Background. Extended spectrum beta-lactamases (ESBLs) producing Enterobacteriaceae cause severe infections in humans which leads to complicated diseases. There is increasing evidence that cattle contribute to the development and spread of multidrug resistant pathogens and this raises public health concern. Despite this, data on the concurrence of ESBL producing pathogens in cattle, especially in the North-West province are rare. Therefore, the aim of the present study was to isolate, identify and characterise ESBL producing E. coli and K. pneumoniae species from cattle faeces and raw beef samples. Results. A total of 151 samples comprising 55 faeces samples and 96 raw beef samples were collected and 259 nonreplicative potential isolates of Enterobacteriaceae were obtained. One hundred and ninety-six isolates were confirmed as E. coli (114; 44%) and K. pneumoniae (82; 32%) species through amplification of uspA and uidA and ntrA gene fragments, respectively. Antimicrobial susceptibility test revealed that large proportions (66.7–100%) of the isolates were resistant to Amoxicillin, Aztreonam, Ceftazidime, Cefotaxime, and Piperacillin and were multidrug resistant isolates. Cluster analysis of antibiotic inhibition zone diameter data revealed close similarities between isolates from different sources or species thus suggested a link in antibiotic exposures. The isolates showing phenotypic resistance against ESBL antimicrobial susceptibility tests were screened for the presence of ESBL gene determinants. It was observed that 53.1% of the isolates harboured ESBL gene determinants. The blaTEM, blaSHV and blaCTX-M genes were detected in E. coli isolates (85.5%, 69.6%, and 58%, respectively) while blaCTX-M and blaOXA were detected in K. pneumoniae (40% and 42.9%, respectively). All the genetically confirmed ESBL producing E. coli and K. pneumoniae isolates were subjected to Enterobacterial Repetitive Intergenic Consensus (ERIC) PCR analysis. Fingerprinting data revealed great similarities between isolates from different areas and sources which indicates cross-contamination between cattle and beef. Conclusion. This study revealed that cattle and its associated food products, beef in particular, harbour ESBL producing pathogens. And this warrants a need to enforce hygiene measures and to develop other mitigation strategies to minimise the spread of antibiotic resistant pathogens from animals to human.


2020 ◽  
Vol 64 (5) ◽  
Author(s):  
Chao-Yue Cui ◽  
Chong Chen ◽  
Bao-Tao Liu ◽  
Qian He ◽  
Xiao-Ting Wu ◽  
...  

ABSTRACT Tigecycline serves as one of the antibiotics of last resort to treat multidrug-resistant (including carbapenem-resistant) pathogens. However, the recently emerged plasmid-mediated tigecycline resistance mechanism, Tet(X), challenges the clinical efficacy of this class of antibiotics. In this study, we detected 180 tet(X)-harboring Acinetobacter isolates (8.9%, n = 180) from 2,018 samples collected from avian farms and adjacent environments in China. Eighteen tet(X)-harboring isolates (10.0%) were found to cocarry the carbapenemase gene blaNDM-1, mostly from waterfowl samples (94.4%, 17/18). Interestingly, among six Acinetobacter strains, tet(X) and blaNDM-1 were found to colocalize on the same plasmids. Moreover, whole-genome sequencing (WGS) revealed a novel orthologue of tet(X) in the six isolates coharboring tet(X) and blaNDM-1. Inverse PCR suggested that the two tet(X) genes form a single transposable unit and may be cotransferred. Sequence comparison between six tet(X)- and blaNDM-1-coharboring plasmids showed that they shared a highly homologous plasmid backbone even though they were isolated from different Acinetobacter species (three from Acinetobacter indicus, two from Acinetobacter schindleri, and one from Acinetobacter lwoffii) from various sources and from different geological regions, suggesting the horizontal genetic transfer of a common tet(X)- and blaNDM-1-coharboring plasmid among Acinetobacter species in China. Emergence and spread of such plasmids and strains are of great clinical concern, and measures must be implemented to avoid their dissemination.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Martha F. Mushi ◽  
Stephen E. Mshana ◽  
Can Imirzalioglu ◽  
Freddie Bwanga

The burden of antimicrobial resistance (AMR) is rapidly growing across antibiotic classes, with increased detection of isolates resistant to carbapenems. Data on the prevalence of carbapenem resistance in developing countries is limited; therefore, in this study, we determined the prevalence of carbapenemase genes among multidrug resistant gram negative bacteria (MDR-GNB) isolated from clinical specimens in a tertiary hospital in Mwanza, Tanzania. A total of 227 MDR-GNB isolates were analyzed for carbapenem resistance genes. For each isolate, five different PCR assays were performed, allowing for the detection of the major carbapenemase genes, including those encoding the VIM-, IMP-, and NDM-type metallo-beta-lactamases, the class A KPC-type carbapenemases, and the class D OXA-48 enzyme. Of 227 isolates, 80 (35%) were positive for one or more carbapenemase gene. IMP-types were the most predominant gene followed by VIM, in 49 (21.59%) and 28 (12%) isolates, respectively. Carbapenemase genes were most detected inK. pneumoniae24 (11%), followed byP. aeruginosa23 (10%), andE. coliwith 19 isolates (8%). We have demonstrated for the first time a high prevalence of MDR-GNB clinical isolates having carbapenem resistance genes in Tanzania. We recommend routine testing for carbapenem resistance among the MDR-GNB particularly in systemic infections.


2018 ◽  
Vol 12 (01) ◽  
pp. 001-008 ◽  
Author(s):  
Tuba Muderris ◽  
Rıza Durmaz ◽  
Birsen Ozdem ◽  
Tuba Dal ◽  
Ozlem Unaldı ◽  
...  

Introduction: In recent years, the prevalence of multidrug-resistant P. aeruginosa has remarkably increased. Thus, we wanted to investigate the carbapenem resistance mechanisms and clonal relationship among 80 carbapenem-resistant P. aeruginosa strains. Methodology: Carbapenemase production was detected using the Modified Hodge Test (MHT), EDTA combined disc method (ECD), and PCR. Expression levels of efflux and porin genes were mesured by real-time reverse transcription PCR. Clonal relationship of the isolates was investigated by pulsed-field gel electrophoresis (PFGE). Results: Carbapenemase production was detected in 7.5% of the isolates with MHT/ECD tests and in 11.3% of the isolates with PCR. Although the specificity of MHT/ECD was high, the sensitivitivity was low. oprD downregulation and mexB, mexY, and mexD overexpression were demonstrated in 55%, 16.3%, 2.5%, and 2.5% of the isolates, respectively. Multiple carbapenem resistance mechanisms were found in nearly a quarter of the isolates. PFGE typing of the 80 P. aeruginosa isolates yielded 61 different patterns. A total of 29 isolates (36.3%) were classified in 10 clusters, containing 2 to 7 strains. We could not find a strict relationship between PFGE profile and carbapenem resistance mechanisms. Conclusions: Although oprD downregulation and MexAB-OprM overexpression were the most common mechanisms, carbapenem resistance was associated with multiple mechanisms in the study. MHT/ECD tests should not be used alone for investigation of carbapenemase production in P. aeruginosa. Rapid tests with high sensitivity and specificity should be developed for the detection of carbapenemase production in P. aeruginosa.


Sign in / Sign up

Export Citation Format

Share Document