scholarly journals Simulasi co-combustion batubara dan biomassa tandan kosong kelapa sawit tertorefaksi (torrefied biomass)

2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Zaenal Arifin ◽  
Amrul Amrul ◽  
Muhammad Irsyad

Coal is still widely used as the main fuel in the industry, especially the power generation industry (PLTU), cement plants and etc. Coal is a fossil fuel whose availability is thinning and its fires produce CO2 emissions that cause a rise in greenhouse gas (GHG) concentricity. On the other biomass is an alternative energy source that is abundant, including empty bunches of oil palm (TKKS), but has poor combustion properties compared to coal when burned directly. The properties of biomass burning can be improved by certain treatment, one of which is through the process of torrefaction. Biomass torrefaction has a calorific value equivalent to sub-bituminous coal B, so it has the potential to be used as an alternative fuel for coal. The purpose of this study was to determine the maximum temperature that occurs in the burner. In this study co-combustion was conducted on simulation of ANSYS program with powder system (pulverized combustion) because this type in recent decades is widely used in industry. In this study conducted a simulation on ANSYS to determine the temperature on the burner and the concentration of emissions produced. The results showed that the simulation of co-combustion burner burner showed the maximum temperature reached 970°C.  The effect of burner and burner temperature in the form of swirl provides sufficient oxygen with more perfect combustion resulting in decreased concentration of CO2 emissions and low concentration of N2 due to higher nozzle temperature. High temperatures lower the concentration of SO2 in the burn chamber.Keyword: Co-combustion, pulverized co-combustion simulation, TKKS torrefaction, burner.

2019 ◽  
Vol 6 (1) ◽  
pp. 1
Author(s):  
Ida Febriana ◽  
Zurohaina Zurohaina ◽  
Sahrul Effendy

Charcoal briquettes are smokeless fuels which are a type of solid fuel whose fly substance is made low enough so that the smoke generated on its utilization will not interfere with health. In this study charcoal briquettes were made from bintaro shell waste and betung bamboo using tapioca flour adhesives. This study aims to obtain the best quality sub-bituminous coal briquettes and coal briquettes. In this study the carbonization temperature used was 400ᵒC and the composition of raw materials for bintaro shells and betung bamboo was 50:50, the composition of raw materials for sub-bituminous coal and straw 90:10. The method used in this research is experiment or experimental method, with fuel value collection using ASTM D5865-03 standard. The results obtained from this study are for charcoal briquettes with 4000C carbonization temperature Inherent Moisture value of 1.91%, ash 2.29%, volatile matter 23.79%, fixed carbon 72.01% and calorific value 5878.7 kal / gr, and for coal briquettes obtained value Inherent Moisture 0.52%, ash 4.42%, volatile matter 17.98%, fixed carbon 77.08% and calorific value 7152.6 kal / gr. The fuel value of coal briquettes is greater than that of charcoal briquettes, but the combustion value of charcoal briquettes includes a good calorific value as an alternative energy source, and is in accordance with the SNI standard of 5000 kal / gr, even close to the Japanese standard 6000 cal / gr. Keywords: Bintaro, briquette, calorific value


2017 ◽  
Vol 18 (2) ◽  
Author(s):  
Widodo Hari Prabowo ◽  
Muhammad Viki Lutfiana ◽  
Rosid Rosid ◽  
Muhammad Burhanuddin Ubaidillah

ABSTRAK Energi yang berasal dari biomassa misalnya limbah baglog, yang selama ini dibuang atau tidak dimanfaatkan, merupakan limbah yang dapat dikonfersi menjadi sumber energi alternatif pengganti bahan bakar fosil. Limbah baglog  jamur dimanfaatkan sebagai bahan bakar dengan cara, mengubah limbah tersebut menjadi biobriket. Tujuan penelitian dilakukan untuk pengkajian laju pembakaran, nilai kalor, kadar abu, kadar air, kadar zat yang menguap, kadar karbon dan drop test pada biobriket. Metode yang digunakan dalam pembuatan menggunakan perbandingan A (1:1:1) dengan komposisi tepung kanji 250 gram limbah baglog 250 gram dan air 250 ml, perbandingan B (1:2:2) dengan komposisi tepung kanji 250 gram limbah baglog 500 gram dan air 500 ml, perbandingan C (1:3:3) dengan komposisi tepung kanji 250 gram  limbah baglog 1000 gram dan air 1000 ml. Pembutan yang pertama dengan penghancuran limbah baglog dan pengeringan, pencampuran tepung, limbah baglog dan air, pengepresan biobriket kemudian dikeringkan. Hasil penelitian memperoleh nilai kalor, kadar air, kadar karbon dan kadar zat yang menguap terdapat pada biobriket sampel A (1:1:1) sebesar 4065,69 kal/g, 5%, 15,4%, dan 71,4 %  untuk kadar abu terbaik terdapat pada sampel B (1:2:2) sebesar 4,8%. Kata kunci: Limbah baglog, biobriket, bahan bakar fosil, jamur tiram  ABSTRACT Energy derived from biomass such as baglog waste that has been disposed or not utilized, is a waste that can be converted into alternative energy sources of fossil fuel. Wastes baglog mushrooms are used as fuel by the way, turning the waste into bio briquette. The aim of this research is to test the combustion rate, calorific value, ash content, moisture content, volatile substance content, carbon content and drop test on bio briquett. The method used in the preparation uses A (1: 1: 1) comparison with starchy flour composition 250 grams of baglog 250 grams and 250 ml water, B ratio (1: 2: 2) with  starchy flour composition 250 grams baglog 500 grams and water 500 ml, C ratio (1: 3: 3) with starch flour composition 250 grams of baglog waste 1000 grams and water 1000 ml. Making the first with the destruction of baglog waste and drying, mixing flour, baglog waste and water, briquette pressing then dried. The results of the research were obtained values of caloric, water content, carbon content and the content of volatile substances in A (1: 1: 1) biobriket of 4065.69 cal / g, 5%, 15.4%, and 71.4% The best ash content was found in sample B (1: 2: 2) of 4.8%. The results obtained of calorific value, moisture content, carbon content and volatile substances were found in A (1: 1: 1) sample biobriket of 4065, 69 cal / g, 5%, 15.4%, and 71.4% for the best ash content were found in sample B (1: 2: 2) of 4.8%. Keywords : Baglog waste, bio briquette, fossil fuel, oyster mushroom


Author(s):  
Elinge Cosmos Moki ◽  
Micah Chibuike Oyibo ◽  
A. U. Birnin Yauri ◽  
Ige Ayodeji Rapheal ◽  
Yakubu Yahaya ◽  
...  

Water hyacinth is an aquatic plant that has a great reproductive potential. The propagation of water hyacinth in most water bodies have decimated the livelihoods of many and reduced the water quality, among other negative effects. Converting this invasive water hyacinth into briquettes will serve as a good measure for controlling its proliferation, and also as a strong strategy for the development of sustainable alternative energy sources. This study explored water hyacinth briquettes as alternative to the local wood fuels through mercerization process to enhance the qualities of a biomass briquette and encourage its use as a renewable energy source of fuel.  The aim was to evaluate the combustion performance of treated water hyacinth (TWH) and water hyacinth (WH). After sample collection, preparation and treatment, the briquettes were produced using 20 g of starch prepared into slurry blended with 80 g of the sample to produce the briquettes. The proximate characteristics, physical properties, combustion properties, the morphologies and structural changes in the briquettes were determined. The results obtained showed that both samples have good energy potentials. The outcome indicates that the alkaline treatment removed the hemicelluloses in the biomass and in turn reduced the moisture content of the briquettes. Consequently, the physical and combustibility properties of the briquettes got improved. The calorific value also improved from (30.58 MJ/Kg) in WH to (34.22 MJ/Kg) in TWH, The scanning electron microscopy analysis showed a rough surface which enhanced bonding of the sample particles while the FTIR showed a structural change in the OH groups which indicates that the hemicelluloses have been removed.


2018 ◽  
Vol 14 (3) ◽  
pp. 334-337
Author(s):  
Aminu Safana Aliyu ◽  
Nurhayati Abdullah ◽  
Fauziah Sulaiman ◽  
Sadik Umar

In this research, the combustion properties of coal and biochar were investigated and compared to identify the potentiality of biochar for coal replacement application. Biochar is derived from the pyrolysis of palm pressed fibre (PPF) at 400 oC. Thermogravimetric analysis (TGA) was used to study the combustion profiles of the materials. The biochar and coal were combusted via thermogravimetric analysis from ambient temperature to 800 oC at 10 oCmin-1 of heating rate. From the results, biochar showed the high calorific value of 27.30 MJkg-1compared to that of coal 26.21 MJkg-1. Furthermore, biochar comprised the greater content of carbon and fixed carbon. Although, during combustion, coal releases high heat of 0.052 W than biochar which gave 0.049 W. This reveals that the biochar produced from PPF can be a perfect competitor against coal for heat generation. This finding could assist in promoting the application of biomass as an alternative to fossil fuel. 


2014 ◽  
Vol 10 (1) ◽  
pp. 35-51
Author(s):  
I. Czupy

Concerns about climate change and fossil fuel shortages are encouraging interest in stumps, as alternative energy sources. Stumps are an almost unused resource in the context of bio fuels. Stump harvesting signifies an intensification of forest management compared with conventional stem-only or above-ground biomass-only harvesting. There are many benefits of stump harvesting. These include: the production of wood fuel, fossil fuel substitution, and improved soil preparation.Removing tree trunks in Hungary has been going on according to the principle of stump extraction, which means stumps are removed by grabbing technology. Experiments have been carried out to reduce the extraction force. In the Great Hungarian Lowland, where large areas require the operation implementation, stump extraction is done by special, hydraulic driven baggers equipped with a special bucket. During operation of the equipment, we carried out measurements of the extraction force and the time requirement. The experiments are designed to carry out the measurements with different soils and different tree species. According to our proposal the suitable force and torque required to remove stumps can be significantly reduced if before the lifting the soil — root connection is loosened. One of the possible ways to implement this task is the use of vibration. Since relatively great vibration power and wide domain of frequency are necessary, therefore we prepared the loosening machinery elements of alternating-current hydraulics system. Based on constructions variants we created a tractor-mounted experimental alternating-current hydraulic stump-loosening machine. It was designed with the ability to produce horizontal vibration in order to loosen stumps.


Author(s):  
Dyah Marganingrum ◽  
Lenny Marilyn Estiaty

Aim: This paper aims to explain the added value increasing method of reject coal which has not utilized by the company. Methodology and Results: The method to increase added value in this study used the agglomeration process of briquettes form that changing composition by adding biomass. The biomass functions to minimize bottom ash produced from burning briquettes so that the briquettes burn entirely. Stages processes in this study consist of characterization, briquetting, physical test, and chemical test. Based on the analysis, reject coal still has a high calorific value of 5,929 cal/gr. Shapes and sizes that were not following needs of coal market or consumer due to reject coal to be a waste. Briquettes have been successfully produced and meet specification requirements based on applicable regulations in Indonesia. Besides physical properties, the briquette meet density requirements which are greater than or equal to 1 gr/cm3 and shatter index value is less than 0.5%. The gas emission test shows below threshold, which is CO 0-30 ppm, H2S 0-3.6 ppm, and NOx is not detected. After evaluation, it showed that by adding 30% biomass, ignition time could be decreased and remaining unburned briquettes or bottom ash was reduced as much as 68.68%. Conclusion, significance and impact study: The bio-coal briquettes is a strategic solution to environmental problems and alternative energy sources that are environmentally friendly, because CO and H2S emissions are still below the threshold, even for NOx not detected. Making Bio-coal briquettes as a solution to the utilization of reject coal mining waste to be used as an alternative energy source has been successfully carried out.


Energies ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 3061 ◽  
Author(s):  
Shazia Noor ◽  
Hadeed Ashraf ◽  
Muhammad Sultan ◽  
Zahid Mahmood Khan

This study provides comprehensive details of evaporative cooling options for building air-conditioning (AC) in Multan (Pakistan). Standalone evaporative cooling and standalone vapor compression AC (VCAC) systems are commonly used in Pakistan. Therefore, seven AC system configurations comprising of direct evaporative cooling (DEC), indirect evaporative cooling (IEC), VCAC, and their possible combinations, are explored for the climatic conditions of Multan. The study aims to explore the optimum AC system configuration for the building AC from the viewpoints of cooling capacity, system performance, energy consumption, and CO2 emissions. A simulation model was designed in DesignBuilder and simulated using EnergyPlus in order to optimize the applicability of the proposed systems. The standalone VCAC and hybrid IEC-VCAC & IEC-DEC-VCAC system configurations could achieve the desired human thermal comfort. The standalone DEC resulted in a maximum COP of 4.5, whereas, it was 2.1 in case of the hybrid IEC-DEC-VCAC system. The hybrid IEC-DEC-VCAC system achieved maximum temperature gradient (21 °C) and relatively less CO2 emissions as compared to standalone VCAC. In addition, it provided maximum cooling capacity (184 kW for work input of 100 kW), which is 85% higher than the standalone DEC system. Furthermore, it achieved neutral to slightly cool human thermal comfort i.e., 0 to −1 predicted mean vote and 30% of predicted percentage dissatisfied. Thus, the study concludes the hybrid IEC-DEC-VCAC as an optimum configuration for building AC in Multan.


2021 ◽  
Vol 13 (13) ◽  
pp. 7011
Author(s):  
Abdulaziz A. Alotaibi ◽  
Naif Alajlan

Numerous studies addressed the impacts of social development and economic growth on the environment. This paper presents a study about the inclusive impact of social and economic factors on the environment by analyzing the association between carbon dioxide (CO2) emissions and two socioeconomic indicators, namely, Human Development Index (HDI) and Legatum Prosperity Index (LPI), under the Environmental Kuznets Curve (EKC) framework. To this end, we developed a two-stage methodology. At first, a multivariate model was constructed that accurately explains CO2 emissions by selecting the appropriate set of control variables based on model quality statistics. The control variables include GDP per capita, urbanization, fossil fuel consumption, and trade openness. Then, quantile regression was used to empirically analyze the inclusive relationship between CO2 emissions and the socioeconomic indicators, which revealed many interesting results. First, decreasing CO2 emissions was coupled with inclusive socioeconomic development. Both LPI and HDI had a negative marginal relationship with CO2 emissions at quantiles from 0.2 to 1. Second, the EKC hypothesis was valid for G20 countries during the study period with an inflection point around quantile 0.15. Third, the fossil fuel consumption had a significant positive relation with CO2 emissions, whereas urbanization and trade openness had a negative relation during the study period. Finally, this study empirically indicates that effective policies and policy coordination on broad social, living, and economic dimensions can lead to reductions in CO2 emissions while preserving inclusive growth.


Sign in / Sign up

Export Citation Format

Share Document