scholarly journals Enhancing the Properties of Water Hyacinth Biomass Briquettes by Mercerization Process

Author(s):  
Elinge Cosmos Moki ◽  
Micah Chibuike Oyibo ◽  
A. U. Birnin Yauri ◽  
Ige Ayodeji Rapheal ◽  
Yakubu Yahaya ◽  
...  

Water hyacinth is an aquatic plant that has a great reproductive potential. The propagation of water hyacinth in most water bodies have decimated the livelihoods of many and reduced the water quality, among other negative effects. Converting this invasive water hyacinth into briquettes will serve as a good measure for controlling its proliferation, and also as a strong strategy for the development of sustainable alternative energy sources. This study explored water hyacinth briquettes as alternative to the local wood fuels through mercerization process to enhance the qualities of a biomass briquette and encourage its use as a renewable energy source of fuel.  The aim was to evaluate the combustion performance of treated water hyacinth (TWH) and water hyacinth (WH). After sample collection, preparation and treatment, the briquettes were produced using 20 g of starch prepared into slurry blended with 80 g of the sample to produce the briquettes. The proximate characteristics, physical properties, combustion properties, the morphologies and structural changes in the briquettes were determined. The results obtained showed that both samples have good energy potentials. The outcome indicates that the alkaline treatment removed the hemicelluloses in the biomass and in turn reduced the moisture content of the briquettes. Consequently, the physical and combustibility properties of the briquettes got improved. The calorific value also improved from (30.58 MJ/Kg) in WH to (34.22 MJ/Kg) in TWH, The scanning electron microscopy analysis showed a rough surface which enhanced bonding of the sample particles while the FTIR showed a structural change in the OH groups which indicates that the hemicelluloses have been removed.

2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Zaenal Arifin ◽  
Amrul Amrul ◽  
Muhammad Irsyad

Coal is still widely used as the main fuel in the industry, especially the power generation industry (PLTU), cement plants and etc. Coal is a fossil fuel whose availability is thinning and its fires produce CO2 emissions that cause a rise in greenhouse gas (GHG) concentricity. On the other biomass is an alternative energy source that is abundant, including empty bunches of oil palm (TKKS), but has poor combustion properties compared to coal when burned directly. The properties of biomass burning can be improved by certain treatment, one of which is through the process of torrefaction. Biomass torrefaction has a calorific value equivalent to sub-bituminous coal B, so it has the potential to be used as an alternative fuel for coal. The purpose of this study was to determine the maximum temperature that occurs in the burner. In this study co-combustion was conducted on simulation of ANSYS program with powder system (pulverized combustion) because this type in recent decades is widely used in industry. In this study conducted a simulation on ANSYS to determine the temperature on the burner and the concentration of emissions produced. The results showed that the simulation of co-combustion burner burner showed the maximum temperature reached 970°C.  The effect of burner and burner temperature in the form of swirl provides sufficient oxygen with more perfect combustion resulting in decreased concentration of CO2 emissions and low concentration of N2 due to higher nozzle temperature. High temperatures lower the concentration of SO2 in the burn chamber.Keyword: Co-combustion, pulverized co-combustion simulation, TKKS torrefaction, burner.


2019 ◽  
Vol 2 (1) ◽  
pp. 1-7
Author(s):  
Andre Nugraha Pramadhana ◽  
Diah Indriani Widiputri ◽  
Gustan Pari

Water hyacinth (Eichhornia crassipes) is a floating plant species, which spreads rapidly in fresh water area. This plant has found to cause environmental problems, such as clogging drainage, water intakes, and ditches, shading out other aquatic vegetation and interfering with fishing, shipping as well as recreational activities. In contrast to its drawbacks, water hyacinth is considered as one of the potential agricultural wastes in Indonesia that can be processed into an alternative solid fuel. Carbonization followed by briquetting is one of the methods that can be applied to process biomass into solid fuels. This work investigated the effect of carbonization temperature and two different types of binders on combustion characteristic of water hyacinth biomass. In this work, carbonization was carried out at three different temperatures, i.e. 350oC, 400oC and 450oC, while comparing the application of two types of binders, which were tapioca gel and polyvinyl acetate (PVAc) adhesive. The results showed that carbonization process of water hyacinth increased the fixed carbon content and the calorific value, and the best result was obtained at 450oC with tapioca gel as the binder. With this condition, the fixed carbon content in the biomass briquette could be increased up to 34.14% with a calorific value of 3,837 kcal/kg. Although the combustion efficiency was only 4.89%. The application of water hyacinth as biomass briquette has shown a promising alternative to reduce CO emission and the above-mentioned environment problems.


2019 ◽  
Vol 3 (2) ◽  
pp. 77
Author(s):  
Indri Yanti ◽  
Muh Pauzan

Penggunaan energi fosil yang berlebihan menjadikan ketersedian sumber energi tersebut semakin menipis. Oleh karena itu, diperlukan suatu usaha untuk mengurangi ketergantungan terhadap bahan bakar fosil, seperti menyediakan energi alternatif yang dapat diperbahurui, melimpah jumlahnya, dan ekonomis. Salah satu sumber energi alternatif yang dapat dikembangkan adalah biobriket dari biomassa. Pada penelitian ini, biomassa yang digunakan yaitu enceng gondok dan sabut kelapa dengan menggunkan lem kayu sebagai perekat. Nilai kalor enceng gondok masih rendah maka untuk meningkatkan nilai kalornya dilakukan penambahan sabut kelapa. Konsenterasi perekat adalah 10% dari massa total sampel dengan ukuran partikel 20 mesh untuk ketiga variasi perbandingan antara enceng gondok dan sabut kelapa yaitu 1:1, 3:1 dan 1:3 berturut-turut. Hasil penelitian menunjukkan bahwa biobriket dengan perbandingan 1:1, 3:1 dan 1:3 memiliki nilai kalor sebesar 4990 kal/g, 4749 kal/g dan 5312 kal/g berturut-turut. Nilai kalor 5312 kal/g sudah sesuai standar SNI 01-6235-2000. Sampel yang memiliki nilai kalor tertinggi tersebut disebabkan oleh komposisi sabut kelapa yang paling banyak diantara sampel lain. Sampel dengan kalor tertinggi memiliki kadar air, kadar abu, kadar zat terbang dan kadar karbon padat sebesar 9%, 12%, 60%, dan 19% berturut-turut.Excessive use of fossil energy results decrease of energy resources. Therefore, an alternative energy is studied to reduce the dependent on fossil energy. Alternative energy has the characteristics such as renewable, abundant and economist. One of the alternative energy that could be developed is biobriquette from biomass. In this research, biobriquette is synthesized from both water hyacinth and coconut husk, wood glue as adhesive. Due to the calorific value of water hyacinth that is relatively small, coconut husk is added, wood glue is used to improve the value. Glue’s concentration is 10% of the total sample’s mass with 20 mesh particle size for three samples with ratio between water hyacinth and coconut husk is 1:1, 3:1 and 1:3, respectively. The result shows that biobriquette with the ratio 1:1, 3:1 and 1:3 has a calorific value of 4990 cal/g, 4749 cal/g and 5312 cal/g, respectively. The 5312 cal/g is match to SNI 01-6235-2000 standard and that the highest value is the effect of the largest amount of coconut husk than the other samples. Biobriquette that has the highest calorific value has the inherent moisture, ash content, volatile matter and fixed carbon 9%, 12%, 60% and 19% respectively.


Author(s):  
Dyah Marganingrum ◽  
Lenny Marilyn Estiaty

Aim: This paper aims to explain the added value increasing method of reject coal which has not utilized by the company. Methodology and Results: The method to increase added value in this study used the agglomeration process of briquettes form that changing composition by adding biomass. The biomass functions to minimize bottom ash produced from burning briquettes so that the briquettes burn entirely. Stages processes in this study consist of characterization, briquetting, physical test, and chemical test. Based on the analysis, reject coal still has a high calorific value of 5,929 cal/gr. Shapes and sizes that were not following needs of coal market or consumer due to reject coal to be a waste. Briquettes have been successfully produced and meet specification requirements based on applicable regulations in Indonesia. Besides physical properties, the briquette meet density requirements which are greater than or equal to 1 gr/cm3 and shatter index value is less than 0.5%. The gas emission test shows below threshold, which is CO 0-30 ppm, H2S 0-3.6 ppm, and NOx is not detected. After evaluation, it showed that by adding 30% biomass, ignition time could be decreased and remaining unburned briquettes or bottom ash was reduced as much as 68.68%. Conclusion, significance and impact study: The bio-coal briquettes is a strategic solution to environmental problems and alternative energy sources that are environmentally friendly, because CO and H2S emissions are still below the threshold, even for NOx not detected. Making Bio-coal briquettes as a solution to the utilization of reject coal mining waste to be used as an alternative energy source has been successfully carried out.


2021 ◽  
Vol 13 (8) ◽  
pp. 4405
Author(s):  
Miroslav Rimar ◽  
Olha Kulikova ◽  
Andrii Kulikov ◽  
Marcel Fedak

Waste is a product of society and one of the biggest challenges for future generations is to understand how to sustainably dispose of large amounts of waste. The main objective of this study was to determine the possibility and conditions of the decentralized combustion of non-hazardous municipal waste. The analysis of the combustion properties of a mixture of wood chips and 20–30% of municipal solid waste showed an improvement in the operating parameters of the combustion process. Analysis also confirmed that the co-combustion of dirty fuels and biomass reduced the risk of releasing minerals and heavy metals from fuel into the natural environment. Approximately 55% of the heavy metals passed into the ash. The analysis of municipal solid waste and fuel mixtures containing municipal solid waste for polycyclic aromatic hydrocarbons showed the risk of increasing polycyclic aromatic hydrocarbon concentrations in flue gases.


2021 ◽  
Vol 21 (4) ◽  
pp. 785-802
Author(s):  
Alla Yu. Borzova ◽  
Arkadiy A. Eremin ◽  
Natalia V. Ivkina ◽  
Oleg K. Petrovich-Belkin

The article considers cooperation patterns between the European Union (EU) and CELAC (Community of Latin America and the Caribbean) in the context of creatively applying this experience to a broader topic of Russia - Latin America multilevel cooperation. The concept of sustainable development, which implies interaction in accordance with its three main dimensions: environmental, social and economic, is adopted on the global level. The interaction between EU and CELAC contributes to the progress in achieving the goals of sustainable development, where a lot of attention is paid to the green economy, alternative energy, and social aspects, since the environmental aspects constraints are providing the most significant impetus to structural changes in the existing development paradigm. This in return is expected to create a model that ensures economic growth based on a green economy, alternative energy, with greater equality and social inclusiveness. At supranational level in the European Union an effective and systemic policy has been formed in the field of nature conservation and combating climate change, which without a doubt can be considered one of the most progressive ones in the world, which creates potential for sharing these experiences with less developed and fortunate nations. European programs for Latin American and Caribbean (LAC) countries have become an important factor in the development of interregional cooperation in environmental protection, biodiversity conservation, and countering natural disasters. The article also focuses on the most recent changes that have occurred in the sphere of interaction between CELAC and EU in the context of COVID-19 pandemic. Massive structural and conceptual changes that have seriously reshaped the priorities and funding of joint programmers between two organizations reflects new priorities for sustainable development in general when it comes to new world realities in post-pandemic world, and could be useful for Russian model for the relations with this region.


2021 ◽  
Author(s):  
Axel Eduardo Rico-Sánchez ◽  
Alexis Joseph Rodríguez-Romero ◽  
Jacinto Elías Sedeño-Díaz ◽  
Eugenia López-López ◽  
Andrea Sundermann

Abstract Mining is one of the main pollution issues worldwide, causing the greatest disturbances to the environment. Industrial and artisanal mining activities are widespread in Mexico, being a major global producer of various metals. This study aimed to assess the ecological impairments resulting from mining activities using the aquatic macroinvertebrates assemblages (MA). A multiple co-inertia analysis (MCOA) was applied to determine the relationships between environmental factors, habitat quality, heavy metals, and aquatic macroinvertebrates in two rivers of the Central Plateau, Mexico. The results revealed three contrasting environmental conditions and different MA. High concentrations of heavy metals, nutrients, and salinity limit the presence of various families of seemingly sensitive macroinvertebrates, these factors were identified as the drivers of structural changes in the MA, showing that not only mining activities, but also agriculture, and villages in the basin, exert negative effects to the macroinvertebrate communities. Diversity indices showed that the lowest diversity matched with both, the most polluted and the most saline rivers. The rivers studied displayed a high alkalinity and hardness, which can lead to the formation of metal precipitates and thus acting as a protection to aquatic biota. Aquatic biomonitoring in rivers, impacted by mining and other human activities, is critical for detecting the effect of metals and other pollutants to improve management and conservation strategies. This study supports the design of cost-effective and accurate water quality biomonitoring protocols in developing countries.


2019 ◽  
Vol 6 (1) ◽  
pp. 1
Author(s):  
Ida Febriana ◽  
Zurohaina Zurohaina ◽  
Sahrul Effendy

Charcoal briquettes are smokeless fuels which are a type of solid fuel whose fly substance is made low enough so that the smoke generated on its utilization will not interfere with health. In this study charcoal briquettes were made from bintaro shell waste and betung bamboo using tapioca flour adhesives. This study aims to obtain the best quality sub-bituminous coal briquettes and coal briquettes. In this study the carbonization temperature used was 400ᵒC and the composition of raw materials for bintaro shells and betung bamboo was 50:50, the composition of raw materials for sub-bituminous coal and straw 90:10. The method used in this research is experiment or experimental method, with fuel value collection using ASTM D5865-03 standard. The results obtained from this study are for charcoal briquettes with 4000C carbonization temperature Inherent Moisture value of 1.91%, ash 2.29%, volatile matter 23.79%, fixed carbon 72.01% and calorific value 5878.7 kal / gr, and for coal briquettes obtained value Inherent Moisture 0.52%, ash 4.42%, volatile matter 17.98%, fixed carbon 77.08% and calorific value 7152.6 kal / gr. The fuel value of coal briquettes is greater than that of charcoal briquettes, but the combustion value of charcoal briquettes includes a good calorific value as an alternative energy source, and is in accordance with the SNI standard of 5000 kal / gr, even close to the Japanese standard 6000 cal / gr. Keywords: Bintaro, briquette, calorific value


2018 ◽  
Vol 89 (6) ◽  
pp. 959-974 ◽  
Author(s):  
Seonyoung Youn ◽  
Chung Hee Park

Alkaline hydrolysis is a common finishing method that is used to give polyester (polyethylene terephthalate, PET) a more natural touch and improved luster via chemical or physical changes in the fibers. However, its potential as a tool for surface modification in the development of single-sided superhydrophobic materials has not been studied yet. In this research, Janus superhydrophobic PET fabrics with asymmetric wetting properties (one side of the PET surface was rendered superhydrophobic while the other side was simply hydrophobic) were fabricated in two steps. Fine roughness was first achieved on the surface of PET fabrics by alkaline hydrolysis. Subsequently, optimized foam-coating emulsions were applied on only one surface of the alkaline-hydrolyzed PET. Alkaline treatment time, solution temperature, and viscosity of the foam-coating emulsions were varied to find optimal conditions in terms of structural changes, mechanical properties, superhydrophobicity, and absorption ability. The specimen treated with an aqueous solution of 8% sodium hydroxide at 70℃ for 60 min and coated with the mixture of the fluoro-emulsion and thickener in the volume ratio of 40:2 was determined to be the optimal conditions for the Janus superhydrophobic property. This sample showed a contact angle of 162.8° and a shedding angle of 5.6° on one side, whereas it completely permitted the percolation of water drops on the other side within 109 s. The mechanical properties of the developed Janus PET under the optimal conditions did not decrease significantly; its weight and tensile strength were found to have decreased by 3.3% and 19.2%, respectively. Furthermore, the single-sided superhydrophobic specimen demonstrated higher moisture transmissibility than the double-sided coated PET under the same alkaline treatment conditions. The method developed herein eliminates the requirement for an additional process to deliver nanoscale surface roughness and has the potential to produce waterproof–breathable PET fabrics for outdoor clothing.


2015 ◽  
Vol 77 (8) ◽  
Author(s):  
Arizal, M. A. A ◽  
Azman, A. H. ◽  
Jaafar, M. N. M. ◽  
Wan Omar, W. Z.

Jatropha Curcas is a non-edible plant that can be used for renewable or alternative energy. The seeds of Jatropha contain up to 60 percent oil. The oil can be converted into biodiesel by well-known two-step using acid-base catalytic transesterification. This paper shows the combustion performance of biodiesel derived from Jatropha oil in an oil burner designed for conventional diesel. Biodiesel used in this study is a blend of diesel with Jatropha Methyl Ester (JME) and combustion performance was measured and compared with that of conventional diesel fuel (CDF). The combustion performance of Jatropha biodiesel is based on wall temperature profiles and the amount of gaseous emissions emitted such as nitrous oxide (NOx), sulphur dioxide (SO2) and carbon monoxide (CO). It was demonstrated that biodiesel derived from Jatropha is comparable to the combustion properties of CDF and has high potential to be used as alternative fuel for diesel machines.


Sign in / Sign up

Export Citation Format

Share Document