scholarly journals Prototipe double acting cylinder transparan sebagai media pembelajaran sistem hidrolik

2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Tri Pratomo ◽  
Rina Dwi Yani ◽  
Maryono Effendi ◽  
Dovian Iswanda ◽  
Alban Naufal ◽  
...  

Double acting cylinders in its application are widely used in the industry and are often applied in maintenance or repair instruments. The purpose of this research is to design and make a double acting cylinder so that the movement of the hydraulic cylinder its fluid flow can be seen clearly and easily implemented in the movement process, especially in the learning process. The research employs experimental method by directly design a transparent double acting cylinder. This transparent double acting cylinder will later be applied to the hydraulic trainer. The steps taken were determining the transparent material, making material samples for tensile tests, designing and making hydraulic cylinders, conducting hydraulic cylinder tests using Autodesk Inventor 2019. From the test results of hydraulic cylinders made from acrylic using Autodesk Inventor 2019, the minimum pressure that occurs is 1,456 MPa and the maximum pressure that occurs is 6,573 MPa, in operation, the recommended pressure 1,456 to 5,551 MPa, double acting transparent cylinder which has a transparent hydraulic cylinder length of 250 mm, thickness 11.4 mm, hydraulic cylinder inner diameter 32 mm, hydraulic cylinder locking uses 4 bolts with size M8, design pressure 23 kg/cm².Keywords: hydraulic system, double acting cylinder, transparent.

2012 ◽  
Vol 164 ◽  
pp. 421-424
Author(s):  
Zhuo Wang ◽  
Yan Jie Li ◽  
Bo Zhang ◽  
Wei Zhang ◽  
Y.Z. Zhang

The electro-hydraulic position-servo synchronization system of horizontal pipes connector was designed in order to connect two pipes in deep sea and make sure the journey of synchronization hydro-cylinders in the hydraulic system is less than 2 mm.Its transfer function of symmetric servo controlling oil-cylinder electro-hydraulic servo system were derived . Simulation analysis of its dynamic characteristic was done, and PID controller was applied on the system to regulate two hydraulic cylinder synchronization controls. In the end ,when the proportionality coefficient is Kp=0.55,integral coefficient is Ki=60,differential coefficient is Kd=0,the error of synchronic displacement was less than 0.5 mm, that achieved the request of the control system.


2020 ◽  
Vol 42 (15) ◽  
pp. 2872-2884
Author(s):  
Jinlin Jiang ◽  
Yu Wang ◽  
Heng Cao ◽  
Jun Zhu ◽  
Xinbin Zhang

In order to reduce the weight and improve the energy efficiency of the lower extremity exoskeleton, a novel pump-valve coordinated controlled (PVCC) hydraulic system is presented. This hydraulic system only uses one electro-hydrostatic unit (EHU) and two valves to drive two hydraulic cylinders at the hip and knee of the lower extremity exoskeleton. The PVCC hydraulic system has the advantage of high energy conversion efficiency of the electro-hydrostatic actuator (EHA), which consists of one EHU and one hydraulic cylinder. To meet the requirements of the moment and speed of each joint of the exoskeleton, the proportional valve and on-off valve are added to adjust the flow into two hydraulic cylinders. The performance of EHU is tested by some hydraulic experiments, and the performance of the PVCC hydraulic system is analyzed by AMESim. The results show that the novel hydraulic system can only use one EHU to drive two hydraulic cylinders simultaneously under the premise of meeting the functional requirements of the exoskeleton.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2456
Author(s):  
Yuan Guo ◽  
Ge Xiong ◽  
Liangcai Zeng ◽  
Qingfeng Li

The internal leakage of a hydraulic cylinder is an inevitable hydraulic system failure that seriously affects the working efficiency of the hydraulic system. Therefore, it is very important to accurately identify and predict leakage data in the hydraulic cylinder. In this paper, a model is proposed to simulate a small internal leakage of hydraulic cylinders, to convert the amount of leakage of hydraulic oil into strain signals through high-precision strain gauges and to train the collected strain signals using various neural networks to form a computational model and obtain prediction results from the model. The neural networks applied in this paper are convolutional neural networks, BP neural networks, T-S neural networks and Elman neural networks. The predicted results of the neural network are compared with the actual leakage amount. The results show that the prediction accuracy of the above four kinds of neural networks are all above 90%, of which the convolutional neural network is the most accurate. This research provides scientific and technical support for measuring and predicting small leaks.


2021 ◽  
Vol 2 (Oktober) ◽  
pp. 29-39
Author(s):  
Muhammad Soleh ◽  
Dedy Pradigdo ◽  
Budi Harijanto

Panzer Anoa 6x6 is a combat vehicle on tires where the first generation of it is made by PT Pindad (Persero). It can mobility, protection and carrying capacity. The ramp door on the Anoa 6x6 APC armored vehicle is driven by a hydraulic system to support the mobility of personnel when exiting or entering the vehicle. The components of the hydraulic system driving the Panzer Anoa 6x6 APC ram door include batteries, power packs, solenoid valves, hydraulic hoses, and hydraulic cylinders. These problems include the ramp door often not functioning, the ramp door moving too slowly and often experiencing congestion when the ramp door is working. These constraints often occur because the pump in the hydraulic system is driven by an electric motor that gets its power source from the battery. The fluid is pressed and flowed through a hydraulic pipe, then the flow of the pressurized fluid is regulated by a solenoid valve to the hydraulic cylinder to move the ramp door. This study uses a pure experimental quantitative method with empirical calculations to obtain a tool with the desired specifications. To move the ramp door weighing 200 kg with a maximum opening angle of 100 degrees in 8 seconds, the heaviest load received by the cylinder is 23557.44 N, the working pressure that occurs in the cylinder is 87.49 bar, where the fluid discharge will flow to the pump. of 2164.77 liters/minute, with a pump power of 394570 Watt and to continue the rotation of the engine with a rotation of 2814.13 rpm (idle) to the hydraulic pump using a pulley mechanism with a ratio of 1: 0.15.


Author(s):  
Shaosen Ma ◽  
Guangping Huang ◽  
Khaled Obaia ◽  
Soon Won Moon ◽  
Wei Victor Liu

The objective of this study is to investigate the hysteresis loss of ultra-large off-the-road (OTR) tire rubber compounds based on typical operating conditions at mine sites. Cyclic tensile tests were conducted on tread and sidewall compounds at six strain levels ranging from 10% to 100%, eight strain rates from 10% to 500% s−1 and 14 rubber temperatures from −30°C to 100°C. The test results showed that a large strain level (e.g. 100%) increased the hysteresis loss of tire rubber compounds considerably. Hysteresis loss of tire rubber compounds increased with a rise of strain rates, and the increasing rates became greater at large strain levels (e.g. 100%). Moreover, a rise of rubber temperatures caused a decrease in hysteresis loss; however, the decrease became less significant when the rubber temperatures were above 10°C. Compared with tread compounds, sidewall compounds showed greater hysteresis loss values and more rapid increases in hysteresis loss with the rising strain rate.


Author(s):  
Leila Ladani ◽  
Lalit Roy

Additive Layer Fabrication, in particular Electron Beam Additive Fabrication (EBAF), has recently drawn much attention for its special usability to fabricate intricately designed parts as a whole. It not only increases the production rate which reduces the production lead time but also reduces the cost by minimizing the amount of waste material to a great extent. Ti6Al4V is the most common type of material that is currently being fabricated using EBAF technique. This material has been used in aerospace industry for several reasons such as excellent mechanical properties, low density, great resistance to corrosion, and non-magnetism. The effects of build direction of layers (namely, addition of layers along one of the x, y & z directions with respect to the build table) and the anisotropy effect caused by it has not been explored vigorously. This anisotropy effect has been investigated in this work. Different mechanical properties such as Yield Strength (YS), Ultimate Tensile Strength (UTS), and Modulus of Elasticity (E) of these three types of Ti6Al4V are determined using tensile tests and are compared with literature. The tensile test results show that YS and UTS for flat-build samples have distinguishably higher values than those of the side-build and top-build samples.


2012 ◽  
Vol 220-223 ◽  
pp. 1012-1017
Author(s):  
Qing Guo ◽  
Dan Jiang

This paper has introduced electromechanical coupling characteristics in the lower extremity exoskeleton systems, considered model ,according to legs supporting gait when people walking, established the load torque compensation model , and a mathematical model of knee position control system which is made of the servo valve, hydraulic cylinders and other hydraulic components, designed hydraulic cylinder position control loop in case of existing load force interference compensation, and used the method of combining the PID and lead correction network for frequency domain design ,ensured system to meet a certain stability margin. The simulation results show that this position control method can servo on the knee angular displacement of normal human walking, reached a certain exoskeleton boost effect, at the same time, met the needs of human-machine coordinated motion.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Hui Chen ◽  
Jinjin Zhang ◽  
Jin Yang ◽  
Feilong Ye

The tensile behaviors of corroded steel bars are important in the capacity evaluation of corroded reinforced concrete structures. The present paper studies the mechanical behavior of the corroded high strength reinforcing steel bars under static and dynamic loading. High strength reinforcing steel bars were corroded by using accelerated corrosion methods and the tensile tests were carried out under different strain rates. The results showed that the mechanical properties of corroded high strength steel bars were strain rate dependent, and the strain rate effect decreased with the increase of corrosion degree. The decreased nominal yield and ultimate strengths were mainly caused by the reduction of cross-sectional areas, and the decreased ultimate deformation and the shortened yield plateau resulted from the intensified stress concentration at the nonuniform reduction. Based on the test results, reduction factors were proposed to relate the tensile behaviors with the corrosion degree and strain rate for corroded bars. A modified Johnson-Cook strength model of corroded high strength steel bars under dynamic loading was proposed by taking into account the influence of corrosion degree. Comparison between the model and test results showed that proposed model properly describes the dynamic response of the corroded high strength rebars.


2021 ◽  
pp. 41-45
Author(s):  

The hydraulic drive of a construction machine is a complex dynamic system that is subjected to many dynamic loads of a variable nature and operates under conditions of variable external influences caused by various factors. During operation, these loads cause failure of the hydraulic transmission elements. To prevent these malfunctions, technical diagnostics should be applied by determining their current technical condition and remaining service life. The article assesses the working condition of hydraulic cylinders using a mathematical model. Using matlab/simulink software to simulate the hydraulic cylinder and hydraulic piston speed when changing the hydraulic cylinder clearance. The simulation results are presented. Keywords: diagnostic, hydraulic cylinder, simulation, development


Author(s):  
K. Velusamy ◽  
P. Chellapandi ◽  
G. R. Raviprasan ◽  
P. Selvaraj ◽  
S. C. Chetal

During a core disruptive accident (CDA), the amount of primary sodium that can be released to Reactor Containment Building (RCB) in Prototype Fast Breeder Reactor (PFBR) is estimated to be 350 kg/s, by a transient fluid dynamic calculation. The pressure and temperature evolutions inside RCB, due to consequent sodium fire have been estimated by a constant burning rate model, accounting for heat absorption by RCB wall, assuming RCB isolation based on area gamma monitors. The maximum pressure developed is 7000 Pa. In case RCB isolation is delayed, then the final pressure inside RCB reduces below atmospheric pressure due to cooling of RCB air. The negative pressure that can be developed is estimated by dynamic thermal hydraulic modeling of RCB air / wall to be −3500 Pa. These investigations were useful to arrive at the RCB design pressure. Following CDA, RCB is isolated for 40 days. During this period, the heat added to RCB is dissipated to atmosphere only by natural convection. Considering all the possible routes of heat addition to RCB, evolution of RCB wall temperature has been predicted using HEATING5 code. It is established that the maximum temperature in RCB wall is less than the permissible value.


Sign in / Sign up

Export Citation Format

Share Document