scholarly journals Substantiationofrules ofsimilarityofbreakingloadoftwistedfishinggear

Author(s):  
Alexander Alekseevich Nedostup ◽  
Pavel Nasenkov ◽  
Alexey Olegovich Razhev ◽  
Karina Konovalova ◽  
Sergey Fedorov

The article focuses on the problem of physical modeling of the physical and mechanical properties of fishing twisted filamentary materials, in particular, the most important one – the breaking load. The problems arise because of conducting full-scale experiments, particularly when the ropes of large diameter are used to build the rope parts of fishing gear. The solution to the problem of determining the breaking load on filamentary parts can be found by using specialized tensile testing machines and modern software, which is an effective tool for predicting the reliability and a resource of a gear part operating in difficult conditions of dynamic and shock loads. However, de-signing of fishing gear must begin with large-scale modeling, which will help to correctly calculate the physical and mechanical properties of the designed object using the well-known parameters of the full-scale material. The similarity rules of breaking load of fishing twisted filamentary gear used for the construction of industrial fishing tools will make it possible to model new elements of these tools without conducting full-scale experiments. At the same time, they will already contain solutions to problems associated with studying the dynamic processes, deformation, fracture, as well as the prediction of reliability and resource of the material. The technique proposed based on determining the scale of similarity of filamentary gear made of polyamide fibers, will help to simu-late various net and rope elements from filaments gear of various sizes and structures, instead of conducting energy-intensive experimental studies on ropes of large diameter.

Author(s):  
Alexander Alekseevich Nedostup ◽  
Karina Konovalova ◽  
Pavel Nasenkov ◽  
Alexey Olegovich Razhev ◽  
Sergey Fedorov

The article considers the problems of physical modeling of twisted filamentary parts of fishing gear and the similitude rules of bending stiffness of filamentary gear parts (FP). The problems are caused firstly by the scope, high costs and complexity of engineering structures in commercial fishery, and thus it was impossible to use them in full-scale testing. Secondly, the lack of systematic experiments prevented from measuring the bending stiffness of synthetic rope parts of fishing gear (SRP). Thus, it becomes necessary to conduct model experiments related to physical modeling of dynamic processes occurring in twisted fishing gear, as well as to carry out a detailed study of the theory of similarity. An attempt to evaluate the bending stiffness of a full-scale object made of polyamide (diameter = 10 mm, the object length and pin diameter were found using large-scale physical characteristics) based on the analysis of experimental data on bending stiffness of synthetic filamentous gear parts made of polyamide with different diameter and length (length = 0.08; 0.10; 0.12; 0.16; 0.20, 0.24 m and diameter = 1.10; 2.0; 3.10; 4.0; 5.0, 6.0 mm) defined on the pins with diameter = 2.0, 10.0 and 30.0 mm. The obtained data will help to prove the correctness of using the theory of dynamic similarity in the course of justification of similarity rules of bending stiffness of the large-diameter cordage and to determine the basic physical and mechanical properties necessary for modeling industrial fishing gear.


2021 ◽  
Vol 887 ◽  
pp. 110-115
Author(s):  
G.A. Sabirova ◽  
R.R. Safin ◽  
N.R. Galyavetdinov

This paper presents the findings of experimental studies of the physical and mechanical properties of wood-filled composites based on polylactide (PLA) and vegetable filler in the form of wood flour (WF) thermally modified at 200-240 °C. It also reveals the dependence of the tensile strength, impact strength, bending elastic modulus, and density of composites on the amount of wood filler and the temperature of its thermal pre-modification. We established that an increase in the concentration of the introduced filler and the degree of its heat treatment results in a decrease of the tensile strength, impact strength and density of composite materials, while with a lower binder content, thermal modification at 200 °C has a positive effect on bending elastic modulus. We also found that 40 % content of a wood filler heated to 200 °C is sufficient to maintain relatively high physical and mechanical properties of composite materials. With a higher content of a wood filler, the cost can be reduced but the quality of products made of this material may significantly deteriorate. However, depending on the application and the life cycle of this product, it is possible to develop a formulation that includes a high concentration of filler.


2020 ◽  
pp. 451-457
Author(s):  
Aleksandr Yur'yevich Vititnev ◽  
Yuriy Davydovich Alashkevich ◽  
Natal'ya Geral'dovna Chistova ◽  
Roman Aleksandrovich Marchenko ◽  
Venera Nurullovna Matygullina

This paper presents the results of experimental studies of the physical and mechanical properties of wood-fiber boards of the wet production method when regulating the design and technological parameters of the grinding process. This allowed us to determine the influence of the working clearance between the grinding discs and the concentration of fibre mass with the subject to of quality change wood fiber after defibrator using the developed construction of the disc fibrillation action on the physico-mechanical properties of boards. As a result of the experiment, regression models were obtained that adequately describe the studied grinding process and allow predicting the values of physical and mechanical properties of the finished product depending on the established  parameters process. A comparative analysis of the size and quality characteristics of the fiber semi-finished product and its fractional composition when using a developed construction the disc of refiner fibrillation action and a traditional design used in industry is carried out. The preferential efficiency of the grinding process under the fibrillating effect the disc of refiner in comparison with the traditional construction disc of refiner is established. As a result, there is a significant improvement in the quality indicators of the fiber semi-finished product and its composition due to the formation and predominance in the total mass of long and thin, respectively, flexible fibrillated fibers with high tile-forming properties, which allows to increase the strength properties of the product (by 20–25%), without using binding resins.


2019 ◽  
Vol 974 ◽  
pp. 181-186
Author(s):  
V.A. Perfilov ◽  
V.V. Gabova ◽  
Inessa A. Tomareva

The effect of superplasticizing, foam agents, various fiber aggregates on the physical and mechanical properties of cellular concrete has been studied. The article covers the results of experimental studies conducted to determine the effect of foam agents PO-6 and PB-2000, as well as polymeric and basalt fiber on the pore structure of foam concrete. The dependence between the change in density and strength of cellular concrete and the structure of its pore space has been determined.


2012 ◽  
Vol 727-728 ◽  
pp. 993-998 ◽  
Author(s):  
A.M.F.D. Silva ◽  
L.S. Lovise ◽  
Sérgio Neves Monteiro ◽  
Carlos Maurício Fontes Vieira

Ashes generated in industrial processes are usually discarded and contribute to environmental pollution. Large scale incorporation into clayey ceramic products for civil construction, such as bricks and tiles, could be a permanent solution. Based on this rationale, this works has as its objective to characterize an ash waste from the incineration of elephant grass and to evaluate its incorporation into a clay to produce red ceramic. The waste was submitted to mineralogical and chemical characterization. Compositions were prepared with incorporation of the waste in amounts of up to 20 wt.% into the clay. Specimens were prepared by extrusion and fired in a laboratory furnace at 850°C. The physical and mechanical properties evaluated were: linear shrinkage, water absorption and flexural strength. The results showed that the waste is mainly composed of quartz and calcium compounds that sensibly reduce the linear shrinkage and does not change the other properties of the ceramic.


2013 ◽  
Vol 199 ◽  
pp. 407-411
Author(s):  
Teresa Bajor ◽  
Marlena Krakowiak ◽  
Dariusz Rydz

Technology development and new grades of alloys creation put before construction materials the number of requirements in range of durability and reliability of created constructions. Receivers expect materials with high strength properties, low production cost of the finished product, availability, corrosion resistance and low specific gravity. So the specific needs of customers mean that studies are constantly associated with the exploration of new materials and technologies that could meet made requirements [1,2,. In large scale this demand is met through the use of non-ferrous metals and their alloys. Selection of appropriate manufacturing techniques and the use of heat treatment procedures allow to obtain materials with better mechanical properties. Here the leading role has the aluminium and its alloys. Due to specific mechanical properties aluminium based materials are used in almost each field of industry. In aircraft industry they are used for the manufacture of fuselage elements in automobile industry the light alloys are used to make cylinder blocks, and other elements of internal combustion engines. In the construction industry they are used to manufacture windows and doors, as well as beautiful self-supporting lightweight facades. While the aluminium alloy products such as films or cans are also used in the food industry. The combination of physico-chemical and mechanical properties of aluminium alloys makes them the optimal solution for innovative design, thanks to them engineers can provide high strength associated with very low gravity. This allows to minimize the costs of subsequent use of the product, and while achieving good strength parameters. As part of this work the analysis of strain rate and temperature impact on mechanical properties of the tested alloy will be carried out. The experimental studies conducted in the temperature range of recrystallization (test temperature: 400°C, 450°C, 480°C, 500°C) using two strain rates 1 s-1 and 0,1 s-1. This paper present the analysis of the application of high-temperature deformation changes in structure mainly caused by the dynamic recrystallization processes, which determine the optimal parameters of AlCuMg deformation process [. The proposed methodology of the research work made it possible to determine the effect of temperature-velocity parameters to changes in mechanical properties (inter alia: microhardness measurements) and changes in the structure of the material, which are closely related to the level achieved in mechanical properties.


Author(s):  
Хафизов ◽  
Kamil Khafizov ◽  
Хафизов ◽  
Ramil Khafizov

A similarity criteria were reveled to determine the dependence of maximum pressure of the tractor wheel on the soil on the basis of the use of similarity theory. Each similarity criterion includes several parameters, characterizing the tractor, its propeller and physical and mechanical properties of the soil. The similarity criteria is taken as factors in the multivariate experiment. Multifactorial experimental studies were planned and carried out. We used Statistics Toolbox subsystem of Matlab computer mathematics system for processing the results of experiments. As a result of statistical processing of the experimental data by the equation we obtained a dependence of maximum pressure of the tractor wheel on the soil from tractor parameters, and physical and mechanical properties of the soil. Statistical data on the equations, such as - multiple correlation coefficient, Fisher’s criterion, Student’s criterion, indicate the significance of equations of the experiments variants, as well as the significance of the coefficients of the regression equations.


Author(s):  
N. I. Chaban

Research of new methods and technologies of non-destructive control of change of long-term metal structures is an actual task of the present. In this article the methodology and results of experimental studies, the main aim of which is to determine the correlation between the intensity of structural noise in the material determined by failure detectors based on ultrasonic field-induced phase grating and the physical and mechanical properties of steels are presented.


2021 ◽  
pp. 43-51
Author(s):  
А. С. Паршин ◽  
С. І. Арабулі ◽  
А. Т. Арабулі

Assessment of the providing level of hotel facilities by quality terry towels based on a comprehensive study of the operational properties of terry textile fabrics. Methodology. Theoretical and experimental researches are based on the basic principles of textile materials science. During experimental studies, modern methods were used to determine the physical and mechanical properties of textile materials, as well as methods of mathematical planning and statistical processing of the experimental results. Results. The state and norms for the provision of hotel facilities in Ukraine with terry towels are given. The assortment of hotel terry towels has been analyzed. The main factors of the formation of a modern assortment of textile materials for hotel terry towels are considered. The focus is on the classic range of double nap terry fabrics for hotel towels. The analyses of the physical and mechanical properties of modern fabrics for hotel towels are present. Indicators characterizing the interaction of textile with liquid moisture have been experimentally determined. The paper presents the results of determining the wear resistance of fabrics after 1, 5 and 10 cycles "wash-ironing". Scientifi c novelty. The data of the physical and mechanical properties of the classic assortment of textile materials for hotel terry towels are systematized. It has been experimentally proven that the assortment of cotton terry textile materials, which is currently available on the Ukrainian market and is used for the manufacture of hotel terry towels, provides a high level of comfort and durability of towels. Practical value. The modern assortment of textile materials for hotel terry towels is analyzed, taking into account the peculiarities of the operational situation of consumption.


2021 ◽  
Vol 2021 (11) ◽  
pp. 51-59
Author(s):  
Nikolay Kurnosov ◽  
Aleksandr Tarnopol'skiy ◽  
Yuliya Nakashidze

Work objective is to solve the urgent problem of increasing the tightness and reliability of pressure couplings during their operation under dynamic loads. Theoretical and experimental studies assessing the impact on the tightness due to roughness nature of mating surfaces and three types of coatings: soft, double-layer and hard have been undertaken. The joints were tested under the influence of axial cyclic load and torque on a bench for accelerated testing. It is established that tightness of pressure couplings during operation under dynamic loads significantly depends on the parameters of microgeometry and physical and mechanical properties of the mating surface material that determine their actual contact area. Recommendations for preparing the surfaces of parts before pressure coupling assembling have been developed. It is proved that the use of regular microrelief and soft galvanic coatings of mating surfaces have a significant effect on the tightness of pressure couplings.


Sign in / Sign up

Export Citation Format

Share Document