scholarly journals Potentiality of Banana (Musa) Stem as Raw Material in Chemical Nonwood Pulping

2007 ◽  
Vol 4 (2) ◽  
pp. 55
Author(s):  
Leong Soo Kwan ◽  
Rakmi Abd Rahman

Wood is not sufficient in many countries to meet the rise demand for paper and pulp. In recent years, a lot of researches have been done to find a new, non-wood raw material for paper production especially using agricultural waste. Agriculture industry is one of the main industries in Malaysia which has generated a large amount of waste every year such as banana stem, rice hull, sugarcane bagasse and wheat straw. These are regarded as abundant, inexpensive and readily available natural resources for pulping industry. The purpose of this paper is to study of the pulping potentialities of banana stems which are growing in Malaysia. In this research the banana stem is used as raw material in the pulping process for the purpose of producing cellulose as pulp. The chemical pulping method which is used in the study is soda pulping, where NaOH is the main chemical substance used in cooking and with anthroquinone as the additive. Temperature, residence time and dosage of chemical were the parameters to be manipulated in this non-wood chemical pulping process to get an optimum condition for pulping. A 3 litre batch reactor was used in this non-wood chemical pulping process. The concentration of NaOH used was varied from 10 – 45 % and cooking temperature was varied from 100 – 200 °C. The ratio of solid to liquid is set at 1:8 and also the cooking period was varied from 30 – 210 minutes. The result shows that the optimum yield of pulp from this study is at 20 % w/w NaOH, cooking at 160 °C with 120 minutes. The yield of pulp is around 30 %. The cellulose content in the pulp produced is as high as 90 %.

2007 ◽  
Vol 4 (2) ◽  
pp. 55
Author(s):  
Soo Kwan Leong ◽  
Rakmi Abd Rahman

Wood is not sufficient in many countries to meet the rise demand for paper and pulp. In recent years, a lot of researches have been done to find a new, non-wood raw material for paper production especially using agricultural waste. Agriculture industry is one of the main industries in Malaysia which has generated a large amount of waste every year such as banana stem, rice hull, sugarcane bagasse and wheat straw. These are regarded as abundant, inexpensive and readily available natural resources for pulping industry. The purpose of this paper is to study of the pulping potentialities of banana stems which are growing in Malaysia. In this research the banana stem is used as raw material in the pulping process for the purpose of producing cellulose as pulp. The chemical pulping method which is used in the study is soda pulping, where NaOH is the main chemical substance used in cooking and with anthroquinone as the additive. Temperature, residence time and dosage of chemical were the parameters to be manipulated in this non-wood chemical pulping process to get an optimum condition for pulping. A 3 litre batch reactor was used in this non-wood chemical pulping process. The concentration of NaOH used was varied from 10 – 45 % and cooking temperature was varied from 100 – 200 °C. The ratio of solid to liquid is set at 1:8 and also the cooking period was varied from 30 – 210 minutes. The result shows that the optimum yield of pulp from this study is at 20 % w/w NaOH, cooking at 160 °C with 120 minutes. The yield of pulp is around 30 %. The cellulose content in the pulp produced is as high as 90 %.


Agronomy ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2221
Author(s):  
Adila Fazliyana Aili Hamzah ◽  
Muhammad Hazwan Hamzah ◽  
Hasfalina Che Man ◽  
Nur Syakina Jamali ◽  
Shamsul Izhar Siajam ◽  
...  

Pineapple waste accounts for a significant part of waste accumulated in landfill which will further contribute to the release of greenhouse gases. With the rising pineapple demands worldwide, the abundance of pineapple waste and its disposal techniques are a major concern. Exploiting the pineapple waste into valuable products could be the most sustainable way of managing these residues due to their useful properties and compositions. In this review, we concentrated on producing useful products from on-farm pineapple waste and processing waste. Bioenergy is the most suitable option for green energy to encounter the increasing demand for renewable energy and promotes sustainable development for agricultural waste. The presence of protease enzyme in pineapple waste makes it a suitable raw material for bromelain production. The high cellulose content present in pineapple waste has a potential for the production of cellulose nanocrystals, biodegradable packaging and bio-adsorbent, and can potentially be applied in the polymer, food and textile industries. Other than that, it is also a suitable substrate for the production of wine, vinegar and organic acid due to its high sugar content, especially from the peel wastes. The potentials of bioenergy production through biofuels (bioethanol, biobutanol and biodiesel) and biogas (biomethane and biohydrogen) were also assessed. The commercial use of pineapples is also highlighted. Despite the opportunities, future perspectives and challenges concerning pineapple waste utilisation to value-added goods were also addressed. Pineapple waste conversions have shown to reduce waste generation, and the products derived from the conversion would support the waste-to-wealth concept.


Eksergi ◽  
2021 ◽  
Vol 18 (1) ◽  
pp. 13
Author(s):  
Sri Wahyu Murni ◽  
Tutik Muji Setyoningrum ◽  
Muhamad Maulana Azimatun Nur

Indonesia biomass waste is a potential feedstock as a source of renewable energy since it can be converted into carcoal briquettes. However, the production of the briquettes using pyrolysis process using the agricultural waste was lacking. In this research, briquette was made from palm shells,  corncob and soybean stem wood due to its high availability and have high cellulose content. The purpose of this research was to produce briquettes from three kind of raw materials by employing pyrolysis process and compared the characteristics. The briquette was made from different type of raw materials (palm shells, corncob and soybean stem) and  the concentration of binder : 3-7 %. Pyrolysis was done at  500 °C, and 100 kg / cm2 of pressing pressure. Results showed that, the best charcoal briquette was achieved from palm shells by using 5% binder, which resulted 4,1% moisture content, 3.4% ash content,  15% volatile matter content, 77.5% carbon content,  7075 cal/g calorific value and  1.4 kg/cm2 compresive strength. It is found that the concentration of binder and raw material influenced the quality of the briquettes. In overall, the production of the briquettes by employing pyrolysis method could meet the standard.


Banana stem is one of the most explored non-wood lignocellulose due to its high cellulose content with small amount of lignin. The conventional pulping processes efficiently remove the lignin, but there is potential to reduce the energy and chemical consumptions due to the low lignin content of banana stem. In this work, soda pulping was carried out for 60-120 minutes using 16-20% w/v alkali charge at boiling temperature of 105°C. The efficiency of lignin removal at low temperature was evaluated using kappa number analysis. The effects of pulping time and alkali charge on pulp properties were investigated using fourier transform infrared spectrometry (FTIR), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). Soda pulping using 18% w/v alkali charge at 10 liquid-to-solid ratio for 90 minutes under atmospheric pressure efficiently removed lignin with minimal cellulose degradation. Extended pulping time and concentrated alkali charge would induce cellulose degradation. FTIR analysis verified that alkaline pulping caused depolymerization on both lignin and cellulose. SEM images of banana stem showed ordered structure cellulose fibrils arrangement. Removal of lignin and hemicellulose was observed through smoother surface of the banana pulp. However, TGA analysis suggested that a better thermal stability could be achieved through pulping using 16% w/v alkali charge.


2019 ◽  
Vol 2 (2) ◽  
pp. 21
Author(s):  
Lindawati Lindawati

Reduction of food rations and shortages is one of the impacts of the increasing human population. Food sector industries then try to cope with the fast growing number of customers. Agribusiness sector gains its popularity in these recent years, including pig farm. The increase trend of animal farming industry is likely to bring increasing pollution problem unless effective treatment methods are used. The main problems related to the pig farm include odor nuisance and pig manure disposal. The existing land application of piggery wastewater is the traditional way to discharge the wastewater. This may yield in land and water contamination, due to the accumulation of unused nutrients by crop plant. A case study of a large commercial pig farm from Australia is proposed to apply in smaller scale in Indonesia. Operational strategies for the small-scale SBR (Sequencing Batch Reactor) treating piggery effluent were developed based on lab-scale experiments. Due to SBR characteristics, which are money-saving and space-saving, it is very suitable to be applied in urban area. An economic evaluation was made of various process options. The cost estimation showed that SBR is a cost effective process, allowing operational batches to be adjusted to reduce unnecessary aeration cost. A reduction in the aeration cost was achieved by shortening the batch time from 24-h to 8-h. A comparison of three different SBR options showed that smaller size reactors could be more flexible and cost effective when compared with the larger ones.


2011 ◽  
Vol 695 ◽  
pp. 170-173 ◽  
Author(s):  
Voravadee Suchaiya ◽  
Duangdao Aht-Ong

This work focused on the preparation of the biocomposite films of polylactic acid (PLA) reinforced with microcrystalline cellulose (MCC) prepared from agricultural waste, banana stem fiber, and commercial microcrystalline cellulose, Avicel PH 101. Banana stem microcrystalline cellulose (BS MCC) was prepared by three steps, delignification, bleaching, and acid hydrolysis. PLA and two types of MCC were processed using twin screw extruder and fabricated into film by a compression molding. The mechanical and crystalline behaviors of the biocomopsite films were investigated as a function of type and amount of MCC. The tensile strength and Young’s modulus of PLA composites were increased when concentration of MCC increased. Particularly, banana stem (BS MCC) can enhance tensile strength and Young’s modulus of PLA composites than the commercial MCC (Avicel PH 101) because BS MCC had better dispersion in PLA matrix than Avicel PH 101. This result was confirmed by SEM image of fractured surface of PLA composites. In addition, XRD patterns of BS MCC/PLA composites exhibited higher crystalline peak than that of Avicel PH 101/PLA composites


PeerJ ◽  
2019 ◽  
Vol 6 ◽  
pp. e6186 ◽  
Author(s):  
Ting-Ting Jiang ◽  
Yan Liang ◽  
Xiang Zhou ◽  
Zi-Wei Shi ◽  
Zhi-Jun Xin

Background Sweet sorghum bagasse (SSB), comprising both a dermal layer and pith, is a solid waste generated by agricultural activities. Open burning was previously used to treat agricultural solid waste but is harmful to the environment and human health. Recent reports showed that certain techniques can convert this agricultural waste into valuable products. While SSB has been considered an attractive raw material for sugar extraction and the production of value-added products, the pith root in the SSB can be difficult to process. Therefore, it is necessary to pretreat bagasse before conventional hydrolysis. Methods A thorough analysis and comparison of various pretreatment methods were conducted based on physicochemical and microscopic approaches. The responses of agricultural SSB stem pith with different particle sizes to pretreatment temperature, acid and alkali concentration and enzyme dosage were investigated to determine the optimal pretreatment. The integrated methods are beneficial to the utilization of carbohydrate-based and unknown compounds in agricultural solid waste. Results Acid (1.5−4.5%, v/v) and alkali (5−8%, w/v) reagents were used to collect cellulose from different meshes of pith at 25–100 °C. The results showed that the use of 100 mesh pith soaked in 8% (w/v) NaOH solution at 100 °C resulted in 32.47% ± 0.01% solid recovery. Follow-up fermentation with 3% (v/v) acid and 6.5% (w/v) alkali at 50 °C for enzymolysis was performed with the optimal enzyme ratio. An analysis of the surface topography and porosity before and after pretreatment showed that both the pore size of the pith and the amount of exposed cellulose increased as the mesh size increased. Interestingly, various compounds, including 42 compounds previously known to be present and 13 compounds not previously known to be present, were detected in the pretreatment liquid, while 10 types of monosaccharides, including D-glucose, D-xylose and D-arabinose, were found in the enzymatic solution. The total monosaccharide content of the pith was 149.48 ± 0.3 mg/g dry matter. Discussion An integrated technique for obtaining value-added products from sweet sorghum pith is presented in this work. Based on this technique, lignin and hemicellulose were effectively broken down, amorphous cellulose was obtained and all sugars in the sweet sorghum pith were hydrolysed into monosaccharides. A total of 42 compounds previously found in these materials, including alcohol, ester, acid, alkene, aldehyde ketone, alkene, phenolic and benzene ring compounds, were detected in the pretreatment pith. In addition, several compounds that had not been previously observed in these materials were found in the pretreatment solution. These findings will improve the transformation of lignocellulosic biomass into sugar to create a high-value-added coproduct during the integrated process and to maximize the potential utilization of agricultural waste in current biorefinery processing.


Forests ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 447
Author(s):  
Miguel Alfonso Quiñones-Reveles ◽  
Víctor Manuel Ruiz-García ◽  
Sarai Ramos-Vargas ◽  
Benedicto Vargas-Larreta ◽  
Omar Masera-Cerutti ◽  
...  

This study aimed to evaluate and compare the relationship between chemical properties, energy efficiency, and emissions of wood and pellets from madroño Arbutus xalapensis Kunth, tázcate Juniperus deppeana Steud, and encino colorado Quercus sideroxyla Humb. & Bonpl. in two gasifiers (top-lit-up-draft (T-LUD) and electricity generation wood camp stove (EGWCS)) in order to determine the reduction of footprint carbon. In accordance with conventional methodologies, we determined the extracts and chemical components (lignin, cellulose, holocellulose), and the immediate analyses were carried out (volatile materials, fixed carbon, ash content and microanalysis of said ash), as well as the evaluation of emission factors (total suspended particulate matter (PM2.5), CO, CO2, CH4, black carbon (BC), elemental carbon (EC), and organic carbon (OC)). The results were statistically analyzed to compare each variable among species and gasifiers. The raw material analyzed showed how the pH ranged from 5.01 to 5.57, and the ash content ranged between 0.39 and 0.53%. The content values of Cu, Zn, Fe, Mg, and Ca ranged from 0.08 to 0.22, 0.18 to 0.19, 0.38 to 0.84, 1.75 to 1.90, and 3.62 to 3.74 mg kg−1, respectively. The extractive ranges from cyclohexane were 2.48–4.79%, acetone 2.42–4.08%, methanol 3.17–7.99%, and hot water 2.12–4.83%. The range of lignin was 18.08–28.60%. The cellulose content ranged from 43.30 to 53.90%, and holocellulose from 53.50 to 64.02%. The volatile material range was 81.2–87.42%, while fixed carbon was 11.30–17.48%; the higher heating value (HHV) of raw material and pellets presented the ranges 17.68–20.21 and 19.72–21.81 MJ kg−1, respectively. Thermal efficiency showed statistically significant differences (p < 0.05) between pellets and gasifiers, with an average of 31% Tier 3 in ISO (International Organization for Standardization) for the T-LUD and 14% (ISO Tier 1) for EGWCS, with Arbutus xalapensis being the species with the highest energy yield. The use of improved combustion devices, as well as that of selected raw material species, can reduce the impact of global warming by up to 33% on a cooking task compared to the three-stone burner.


2021 ◽  
Vol 11 (13) ◽  
pp. 6066
Author(s):  
Dora Luz Gómez-Aguilar ◽  
Juan Pablo Rodríguez-Miranda ◽  
Deisy Baracaldo-Guzmán ◽  
Octavio José Salcedo-Parra ◽  
Javier Andrés Esteban-Muñoz

The present research shows the results obtained from the biosorption process of Pb, using coffee pulp as a biosorbent in synthetic waters. To do this, the lignin and cellulose content and the percentage of removal of Pb2+ ions was determined; additionally, the sorption’s optimal variables, such as the optimum pH, the point of zero charge (pHpzc), the kinetics and the adsorption isotherm, were determined. A comparison was made with other by-products derived from coffee crops. According to the results obtained in this research, the cellulose percentage was 29.12 ± 0.22% and the lignin percentage was 19.25 ± 0.16% in the coffee pulp, the optimum pH was 2.0 units and the kinetic model, which adjusted to the biosorption’s process, was the pseudo-second order of Ho and McKay, presenting an isotherm of Langmuir’s model and pHpzc of 3.95 units. Lastly, the removal of the pollutant was 86.45%, with a capacity of maximum adsorption of 24.10 mg·g−1 obtained with a particle size of 180 µm, time of contact of 105 min and at 100 RPM. Finally, we express that (a) the coffee pulp can be used as a sustainable alternative for the removal of the pollutant mentioned in synthetic and/or industrial wastewater matrices, to meet goals 3.9 and 6.9 of the Sustainable Development Goals of the 2030 agenda, and (b) the novelty of this research is the use of an agricultural waste of easy acquisition as a sorbent, without chemical modification, since it presented a high percentage of efficiency in the removal of Pb2+ ions. In turn, the challenge of this research is implementing this green technology on a pilot, semi-industrial and/or industrial scale in wastewater treatment systems.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Sarah Salleh ◽  
Rohah A. Majid ◽  
Wira Jazair Yahya ◽  
Hasannuddin Abd Kadir ◽  
Arif Fahim Ezzat Chan ◽  
...  

Abstract Bagasse sugarcane (BSC) has low fibre strength due to low cellulose content. Hence, by adding a strong secondary fibre that is high in cellulose such as pineapple leaf fibre (PALF), the fibre strength of the system can be improved. High portion of PALF decreased the composite paper performance because the high composition of PALF tends to produce flocs and agglomerates fibres. The arrangement of the fibres in composite paper should be improved so that this agglomerate’s effect could be overcome. A novel multilayer hybrid fibre composite was used. BSC/PALF with several hybrid ratios was studied in terms of the mechanical and moisture properties of the produced paper sheet and the results showed that multilayer hybrid composite paper produced higher in hybrid composite paper’s properties compared with random hybrid composite paper. The colour of multilayer hybrid fibre composite paper resembled the natural bright colour of BSC and the multilayer hybrid fibre composite paper also shown a slightly low weight loss percentage compared with the random hybrid fibre composite paper after 60 days of soil burial test. As a conclusion, multilayer hybrid fibre composite produced the stronger interfibre bonding and overcome the agglomerate’s effect between BSC/PALF compared with random hybrid fibre composite.


Sign in / Sign up

Export Citation Format

Share Document