scholarly journals Plant morphology, vegetative biomass composition and energy content of three different Silybum marianum accessions

2020 ◽  
Vol 19 (6) ◽  
pp. 71-78
Author(s):  
Tommaso Martinelli

Silybum marianum (L.) Gaertn. (milk thistle) is plant species that has been utilized principally for medicinal purposes for more than 2000 years. Recently it was proposed for biomass production in marginal environments, but vegetative biomass compositional analyses had not been available so far. The study of plant morphology and biomass composition was conducted on three different S. marianum accessions grown under open field conditions. The results indicate that plant morphological traits show major differences between accessions: this suggests that the available natural variability can be further utilized in order to develop improved S. marianum cultivars. Biomass compositional analysis shows that extractives, ash, lignin and cellulose content are comparable to other herbaceous bioenergy crops and that these traits display only limited variability in the studied accessions. Hemicellulose fraction is composed only by xylans and its content appears averagely lower in comparison to other herbaceous biomasses. Interestingly, in S. marianum biomass total nitrogen content is lower if compared to other herbaceous species. The possible involvement of this specific biomass trait in S. marianum nitrogen utilization efficiency has to be further investigated.

2021 ◽  
pp. 1-8
Author(s):  
Tommaso Martinelli ◽  
Karin Baumann ◽  
Andreas Börner

Abstract Milk thistle, Silybum marianum (L.) Gaertn. (Asteraceae), is an economically important medicinal plant utilized for silymarin production. Moreover, the species has been positively evaluated for vegetable oil and biomass production. Despite these positive characteristics, milk thistle is still marked by traits that are typical of undomesticated species (most importantly natural fruit dispersal at maturity) and requires further genetic improvement for its complete exploitation. This manuscript summarizes all the information collected through time about a collection of nine milk thistle wild and mutant lines and it discusses the possible further utilization of these genotypes. The accessions are characterized by interesting traits related to: fruit silymarin composition (S. marianum chemotype A and B), fruit fatty acid composition (high oleic and high stearic acid lines), fruit condensed tannins content, vegetative biomass composition (modification of xylans or lignin content), vegetative biomass structure (dwarf and tall lines), modifications of leaf variegation (hypervareigated line) and different types of fruit shatter resistance at maturity. All the lines underwent subsequent generations of selfing and are stable for all the described traits. The accessions will be made available at the Genebank of the Leibniz Institute of Plant Genetics and Crop Plant Research (IPK, Gatersleben) and may prove to be a useful genetic material for the improvement of qualitative fruit traits (silymarin quality, fatty acid composition) and for the further development of shatter-resistant S. marianum genotypes towards the complete domestication of this promising species.


2011 ◽  
Vol 91 (2) ◽  
pp. 305-314 ◽  
Author(s):  
Cody Chytyk ◽  
Pierre Hucl ◽  
Gordon Gray

Chytyk, C. J., Hucl, P. J. and Gray, G. R. 2011. Leaf photosynthetic properties and biomass accumulation of selected western Canadian spring wheat cultivars. Can. J. Plant Sci. 91: 305–314. Current studies indicate wheat straw as a viable source for the production of cellulosic ethanol. Since photosynthetic performance impacts the overall success of the mature plant, this study aimed to measure the photosynthetic vigour of 11 spring wheat cultivars during field development as well as their biomass composition at maturity to determine which would be optimum for ethanol production. All cultivars had similar maximal quantum yields of photosystem II photochemistry (FV/FM), normalized difference vegetation index and biomass composition in the field. However, differences were observed in photosynthetic rate, with McKenzie having the highest light-saturated maximal rate of CO2 uptake (A max) and apparent quantum yield of CO2 uptake (Φapp CO2), while also having the best water use efficiency. Snowbird was found to have the lowest CO2-compensation point (Γ*) and A max. Upon subjecting wheat samples to photoinhibitory conditions, McKenzie and Kyle were found to be the most resistant and susceptible, respectively, with a difference of 11% in FV/FM. Abundance of xanthophyll pigments were not found to be a contributing cause to differential photoinhibitory resistance as there was not a noticeable difference between cultivars. Although some cultivars were found to have enhanced photosynthetic traits over others, these were slight and did not contribute to changes in plant biomass. However, McKenzie did present a higher cellulose content, which would be favourable for ethanol production.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Yang Tian ◽  
Chien-Yuan Lin ◽  
Joon-Hyun Park ◽  
Chuan-Yin Wu ◽  
Ramu Kakumanu ◽  
...  

Abstract Background The development of bioenergy crops with reduced recalcitrance to enzymatic degradation represents an important challenge to enable the sustainable production of advanced biofuels and bioproducts. Biomass recalcitrance is partly attributed to the complex structure of plant cell walls inside which cellulose microfibrils are protected by a network of hemicellulosic xylan chains that crosslink with each other or with lignin via ferulate (FA) bridges. Overexpression of the rice acyltransferase OsAT10 is an effective bioengineering strategy to lower the amount of FA involved in the formation of cell wall crosslinks and thereby reduce cell wall recalcitrance. The annual crop sorghum represents an attractive feedstock for bioenergy purposes considering its high biomass yields and low input requirements. Although we previously validated the OsAT10 engineering approach in the perennial bioenergy crop switchgrass, the effect of OsAT10 expression on biomass composition and digestibility in sorghum remains to be explored. Results We obtained eight independent sorghum (Sorghum bicolor (L.) Moench) transgenic lines with a single copy of a construct designed for OsAT10 expression. Consistent with the proposed role of OsAT10 in acylating arabinosyl residues on xylan with p-coumarate (pCA), a higher amount of p-coumaroyl-arabinose was released from the cell walls of these lines upon hydrolysis with trifluoroacetic acid. However, no major changes were observed regarding the total amount of pCA or FA esters released from cell walls upon mild alkaline hydrolysis. Certain diferulate (diFA) isomers identified in alkaline hydrolysates were increased in some transgenic lines. The amount of the main cell wall monosaccharides glucose, xylose, and arabinose was unaffected. The transgenic lines showed reduced lignin content and their biomass released higher yields of sugars after ionic liquid pretreatment followed by enzymatic saccharification. Conclusions Expression of OsAT10 in sorghum leads to an increase of xylan-bound pCA without reducing the overall content of cell wall FA esters. Nevertheless, the amount of total cell wall pCA remains unchanged indicating that most pCA is ester-linked to lignin. Unlike other engineered plants overexpressing OsAT10 or a phylogenetically related acyltransferase with similar putative function, the improvements of biomass saccharification efficiency in sorghum OsAT10 lines are likely the result of lignin reductions rather than reductions of cell wall-bound FA. These results also suggest a relationship between xylan-bound pCA and lignification in cell walls.


2017 ◽  
Vol 11 ◽  
Author(s):  
Lucia Ottaiano ◽  
Ida Di Mola ◽  
Adriana Impagliazzo ◽  
Eugenio Cozzolino ◽  
Felicia Masucci ◽  
...  

Cardoon is a crop well adapted to Mediterranean climatic conditions, that is able to grow also in marginal lands thus reducing competition for land with food crops. It is considered a key crop for bio-refinery since it allows to produce different interesting molecules for industrial application. From stems it is possible to obtain large amounts of cellulose, grains are a good source of oil and proteins and roots can be a source of inulin. The aim of this research has been to evaluate the productive levels of different genotypes of cardoon in two different climatic conditions of Mediterranean cropland (a site in the Vesuvius plain and a site in the internal hilly cropland). In both the sites, during 3 years (from 2012-2013 to 2014-2015), three genotypes (Altilis, Gigante e Trinaseed) were cultivated with 2 planting densities (4 and 8 plants per m2). A low input cropping system was adopted (no irrigation and 150 kg ha-1 of N supplied as ammonium nitrate). In plainy site (NA-Ac.), lignocellulosic biomass yield was 19 t ha-1 d.m. and grain yield 2.7 t ha-1 on the average of the 3 years period. In the hilly site, biomass yield was similar (20 t ha-1 d.m.) while grain yield was higher (3.9 t ha-1 on the average) as compared to the plainy site. As regards biomass composition, an increase of hemicellulose and a decrease of cellulose content was measured in the plainy site, maybe as a response of plant to the higher drought stress.


2017 ◽  
Vol 4 (11) ◽  
pp. 170683 ◽  
Author(s):  
C. B. Wall ◽  
R. A. B. Mason ◽  
W. R. Ellis ◽  
R. Cunning ◽  
R. D. Gates

Ocean acidification (OA) is predicted to reduce reef coral calcification rates and threaten the long-term growth of coral reefs under climate change. Reduced coral growth at elevated p CO 2 may be buffered by sufficiently high irradiances; however, the interactive effects of OA and irradiance on other fundamental aspects of coral physiology, such as the composition and energetics of coral biomass, remain largely unexplored. This study tested the effects of two light treatments (7.5 versus 15.7 mol photons m −2  d −1 ) at ambient or elevated p CO 2 (435 versus 957 µatm) on calcification, photopigment and symbiont densities, biomass reserves (lipids, carbohydrates, proteins), and biomass energy content (kJ) of the reef coral Pocillopora acuta from Kāne‘ohe Bay, Hawai‘i. While p CO 2 and light had no effect on either area- or biomass-normalized calcification, tissue lipids gdw −1 and kJ gdw −1 were reduced 15% and 14% at high p CO 2 , and carbohydrate content increased 15% under high light. The combination of high light and high p CO 2 reduced protein biomass (per unit area) by approximately 20%. Thus, under ecologically relevant irradiances, P. acuta in Kāne‘ohe Bay does not exhibit OA-driven reductions in calcification reported for other corals; however, reductions in tissue lipids, energy content and protein biomass suggest OA induced an energetic deficit and compensatory catabolism of tissue biomass. The null effects of OA on calcification at two irradiances support a growing body of work concluding some reef corals may be able to employ compensatory physiological mechanisms that maintain present-day levels of calcification under OA. However, negative effects of OA on P. acuta biomass composition and energy content may impact the long-term performance and scope for growth of this species in a high p CO 2 world.


2021 ◽  
Vol 12 (1) ◽  
pp. 25-33
Author(s):  
R. D. Vasylyshyn ◽  
Yu. M. Yurchuk ◽  
I. P. Lakyda ◽  
R. P. Bondarchuk

Development of renewable energy production is one of the main directions of decarbonizing the Ukraine’s energy sector as well as the forestry sector. Increase in woody biomass utilization efficiency at producing energy, alongside with securing the proper level of technological processes and technical equipment, also requires a reliable information support toolbox that would facilitate managerial decisions. An important constituent of this toolbox is represented by the regional assessments of energy function of forest plant communities. The information basis of the research is formed by the information from the industrial database of IA “Ukrderzhlisproekt”, which contains the detailed biometric characteristics of the stands in the studied region, as well as by a system of mathematical models for quantitative assessment of foersts’ live biomass and dead organic matter. As a result, the quantitative values of the total energy content in live biomass and daed organic matter of Zhytomyr Polissia’s forests were determined. The total amount of energy accumulated in vegetal biomass of the region's forests is 3035.7 PJ, which corresponds to 100.2 million tons of conventional fuel. At the same time, the share of the total energy content in dead organic matter is 11.1 %. The structure of energy content in vegetal biomass in the region is dominated by pine stands, which accumulate more than 60 % of the energy of forests of Zhytomyr region, including 70.8 % - in live biomass of tree trunks. More than 40 % of energy is accumulated in vegetal biomass of stands of I site index class, which mainly grow in fairly infertile forest growth conditions. In the general structure of energy content in dead organic matter (336.2 PJ) more than 60 % belongs to forest litter (212.8 PJ which is not considered a source of renewable energy), standing dead trees 12.3 % (41.3 PJ), dry branches – 17.8 % (close to 60 PJ). The results obtained in the course of the research will serve as an information background for the formation of a strategy for development of forest bioenergy in Zhytomyr region.


Plants ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 1266
Author(s):  
Evangelia Stavridou ◽  
Richard J. Webster ◽  
Paul R. H. Robson

Saline land represents a growing resource that could be utilised for growing biomass crops, such as Miscanthus × giganteus (Greef et Deu.), for eliminating competition with staple food crops. However, the response mechanisms to different salinity regimes, in relation to the impact on quality of the harvested biomass and the combustion properties are largely unknown. Herein, the focus was on the salt-induced compositional changes of ion flux and compartmentalization in the rhizome, stems, and leaves in relation to their impact on salinity tolerance and the combustion quality through investigating the photophysiological, morphophysiological, and biochemical responses of M. × giganteus to moderate and a severe salinity. Severe salinity induced an immediate and sustained adverse response with a reduction in biomass yield, photoinhibition, and metabolic limitations in photosynthesis. Moderate salinity resulted in a slower cumulative response with low biomass losses. Biomass composition, variations in ion compartmentalisation and induction of proline were dependent on the severity and duration of salinity. Ash behaviour indices, including the base percentage and base-to-acid ratio, indicated lower corrosion potential and lower risk of slagging under salinity. Understanding the impact of salinity on the potential for growth on saline land may identify new targets for breeding salinity-tolerant bioenergy crops.


Author(s):  
Stefanie Van Wychen ◽  
Steven M. Rowland ◽  
Kaitlin C. Lesco ◽  
Peter V. Shanta ◽  
Tao Dong ◽  
...  

AbstractOpportunities associated with biomass production and bioproduct isolation from algae-derived feedstocks are plentiful and promising; however, there are challenges associated with realizing these applications. One of the most important, and often overlooked, challenges is the lack of availability of a strong foundation of compositional analysis methods validated on microalgal biomass. Currently, compositional analysis in algae is dominated by the use of interference-prone methods, a lack of full mass balance accounting, and the use of top-down approaches that bin all unaccounted-for mass into a single category, such as carbohydrates. We present here an approach based on a bottom-up algal biomass characterization aimed at moving towards, and highlighting the importance of, full and accurate mass closure to achieve the maximum economic potential from a sustainable and renewable feedstock. Algal biomass representing three genera, Nannochloropsis, Scenedesmus, and Monoraphidium, was subjected to a cell rupture and fractionation process, followed by detailed characterization of each fraction to determine the partitioning of measured and unknown components. The goal of this work is to identify where the missing components partition, and develop a strategy to close the mass balance or identify the unknowns, while utilizing a rigorous characterization approach for characterizing algal biomass. Although only 75–80% of the biomass was accounted for, the fractionation approach utilized here provides key insight into possible chemical components for future investigations.


2020 ◽  
Vol 8 (1) ◽  
pp. 48-56
Author(s):  
Adewale Elijah Fadeyi ◽  
Saheed Olatunbosun Akiode ◽  
Stella A Emmanuel ◽  
Olajide Ebenezer Falayi

Agricultural wastes have been identified as a potential lignocellulosic biomass for bioethanol production. An accurate biomass characterization is needed to evaluate the new potential lignocelluloses biosource for biofuel production. This study evaluates the compositional analysis and characterization of three agricultural wastes (melon husk, moringa pod and mango endocarp). The samples were collected locally in Sheda Village, FCT, Abuja, Nigeria. The lignocellulose biomass composition of the samples was determined by using a proven economically viable gravimetric method and the samples were further characterized using the FTIR. The results showed that a significant amount of hemicelluloses content was found, from 19.38% to 27.74% and the highest amount was present in melon musk. The amount of cellulose ranging from 22.49% to 45.84% was found where the highest amount was found in mango endocarp. Lignin content was in the range of 22.62% to 29.87% and melon husk was shown to have the highest amount. The FTIR spectroscopic analysis showed a broad band at 3422.99 cm-1, 3422.66 cm-1, 3422.85 cm-1 (for mango endocarp, melon husk and moringa pod respectively) representing bonded –OH groups. The peak around 1637 cm-1 corresponds to C=C stretching of conjugated carboxylic acids. The aliphatic chains, -CH2- and –CH3, which form the basic structure of cellulose material, were seen at 1205.72, 1204.50 and 1206.24 cm-1. The signals at 1056.15, 1035.80 and 1055.86 cm-1 correspond to C-O-R (alcohols or esters) vibration. The results show that the samples contain significant quantity of lignocellulosic biomass. Thus, the agricultural wastes could be of valuable use in biofuel production.


Sign in / Sign up

Export Citation Format

Share Document