scholarly journals Recent advance in the resources and material technology. Operation improvement by the introduction of a large casting machine.

1997 ◽  
Vol 113 (6) ◽  
pp. 478-481
Author(s):  
RYUHEI NIIMURA
1973 ◽  
Vol 1 (2) ◽  
pp. 210-250 ◽  
Author(s):  
J. D. Walter ◽  
G. N. Avgeropoulos ◽  
M. L. Janssen ◽  
G. R. Potts

Abstract Fundamentals of composite material technology are applied to the investigation of multi-ply cord-reinforced rubber systems as used in pneumatic tires. The stiffness parameters of such multi-ply systems are determined through the use of the elastic properties of the constituent cord and rubber components. The effects of coupling between the bending and stretching modes of deformation are discussed along with the limitations of present composite material technology as applied to soft rubbery systems. The predicted stiffness parameters are related to tread wear, obstacle envelopment, vibration, and stress analysis of tires.


2020 ◽  
Vol 72 (10) ◽  
pp. 1153-1158 ◽  
Author(s):  
Yafei Deng ◽  
Xiaotao Pan ◽  
Guoxun Zeng ◽  
Jie Liu ◽  
Sinong Xiao ◽  
...  

Purpose This paper aims to improve the tribological properties of aluminum alloys and reduce their wear rate. Design/methodology/approach Carbon is placed in the model at room temperature, pour 680°C of molten aluminum into the pressure chamber, and then pressed it into the mold containing carbon felt through a die casting machine, and waited for it to cool, which used an injection pressure of 52.8 MPa and held the same pressure for 15 s. Findings The result indicated that the mechanical properties of matrix and composite are similar, and the compressive strength of the composite is only 95% of the matrix alloy. However, the composite showed a low friction coefficient, the friction coefficient of Gr/Al composite is only 0.15, which just is two-third than that of the matrix alloy. Similarly, the wear rate of the composite is less than 4% of the matrix. In addition, the composite can avoid severe wear before 200°C, but the matrix alloy only 100°C. Originality/value This material has excellent friction properties and is able to maintain this excellent performance at high temperatures. Peer review The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-10-2019-0454/


2021 ◽  
Vol 13 (12) ◽  
pp. 6921
Author(s):  
Laura Sisti ◽  
Annamaria Celli ◽  
Grazia Totaro ◽  
Patrizia Cinelli ◽  
Francesca Signori ◽  
...  

In recent years, the circular economy and sustainability have gained attention in the food industry aimed at recycling food industrial waste and residues. For example, several plant-based materials are nowadays used in packaging and biofuel production. Among them, by-products and waste from coffee processing constitute a largely available, low cost, good quality resource. Coffee production includes many steps, in which by-products are generated including coffee pulp, coffee husks, silver skin and spent coffee. This review aims to analyze the reasons why coffee waste can be considered as a valuable source in recycling strategies for the sustainable production of bio-based chemicals, materials and fuels. It addresses the most recent advances in monomer, polymer and plastic filler productions and applications based on the development of viable biorefinery technologies. The exploration of strategies to unlock the potential of this biomass for fuel productions is also revised. Coffee by-products valorization is a clear example of waste biorefinery. Future applications in areas such as biomedicine, food packaging and material technology should be taken into consideration. However, further efforts in techno-economic analysis and the assessment of the feasibility of valorization processes on an industrial scale are needed.


Metals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 398
Author(s):  
Jesus Gonzalez-Trejo ◽  
Cesar A. Real-Ramirez ◽  
Jose Raul Miranda-Tello ◽  
Ruslan Gabbasov ◽  
Ignacio Carvajal-Mariscal ◽  
...  

In vertical continuous casting machines the liquid steel from the tundish is poured into the mold through the Submerged Entry Nozzle (SEN). The shape and direction of the SEN exit jets affect the liquid steel dynamics inside the mold. This work quantifies the effect of the SEN pool on the principal characteristics of the jets emerging from it, precisely, the shape, the spread angles, and the mold impact point. Experimental and numerical simulations were carried out using a SEN simplified model, a square-shaped bore nozzle with square-shaped outlet ports whose length is minimal. These experiments showed two well-defined behaviors. When a single vortex dominates the hydrodynamics inside the simplified SEN, the exit jets spread out and are misaligned about the mold’s central plane. On the contrary, when the inner flow pattern shows two vortexes, the exit jets are compact and parallel to the mold wide walls. The measured difference on the jet’s falling angles is 5°, approximately, which implies that in an actual casting machine, the impingement point at the narrow mold wall would have a variation of 0.150 m. This hydrodynamic analysis would help design new SENs for continuous casting machines that improve steel quality.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4386
Author(s):  
Muhammad Syahmi Abd Rahman ◽  
Mohd Zainal Abidin Ab Kadir ◽  
Muhamad Safwan Abd Rahman ◽  
Miszaina Osman ◽  
Shamsul Fahmi Mohd Nor ◽  
...  

The advancement of material technology has contributed to the variation of high-performance composites with good electrical insulation and mechanical properties. Their usage in electrical applications has grown since then. In Malaysia, the composite made of Glass Fiber Reinforced Polymer (GFRP) has been adopted for crossarm manufacturing and has successfully served 275 kV lines for a few decades. However, the combination of extreme conditions such as lightning transient and tropical climate can impose threats to the material. These issues have become major topics of discussion among the utilities in the Southeast Asian (SEA) region, and also in previous research. In Malaysia, more than 50% of total interruptions were caused by lightning. Limited studies can be found on the composite crossarm, especially on the square tube GFRP filled crossarm used in Malaysia. Therefore, this paper proposes to study the behavior of the particular GFRP crossarm, by means of its insulation characteristics. Experimental and simulation approaches are used. Throughout the study, the GFRP specimen is known to have an average breakdown strength at 7.2 kV/mm. In addition, the CFO voltages of the crossarm at different lengths are presented, whereby the behavior under dry and wet conditions is comparably discussed. At the same time, the polarity effect on the CFO voltages is highlighted. The maximum E-fields at the immediate moment before breakdown are analyzed by adopting the finite element method (FEM). Non-uniform distribution of E-fields is witnessed at different parts of the crossarm structure. Simultaneously, the maximum field localized on the crossarm immediately before the breakdown is also presented.


2011 ◽  
Vol 693 ◽  
pp. 3-9 ◽  
Author(s):  
Bruce Gunn ◽  
Yakov Frayman

The scheduling of metal to different casters in a casthouse is a complicated problem, attempting to find the balance between pot-line, crucible carrier, furnace and casting machine capacity. In this paper, a description will be given of a casthouse modelling system designed to test different scenarios for casthouse design and operation. Using discrete-event simulation, the casthouse model incorporates variable arrival times of metal carriers, crucible movements, caster operation and furnace conditions. Each part of the system is individually modelled and synchronised using a series of signals or semaphores. In addition, an easy to operate user interface allows for the modification of key parameters, and analysis of model output. Results from the model will be presented for a case study, which highlights the effect different parameters have on overall casthouse performance. The case study uses past production data from a casthouse to validate the model outputs, with the aim to perform a sensitivity analysis on the overall system. Along with metal preparation times and caster strip-down/setup, the temperature evolution within the furnaces is one key parameter in determining casthouse performance.


1984 ◽  
Vol 52 (1) ◽  
pp. 41-45 ◽  
Author(s):  
R. Compagni ◽  
R.R. Faucher ◽  
R.A. Yuodelis

Sign in / Sign up

Export Citation Format

Share Document