scholarly journals Perturbations of the Depth of Liquid Penetration Into the Capillary During Bubble Departures

2021 ◽  
Vol 15 (4) ◽  
pp. 254-259
Author(s):  
Paweł Dzienis

Abstract In the present paper, the influence of bubble size on liquid penetration into the capillary was experimentally and numerically studied. In the experiment, bubbles were generated from a glass capillary (with an inner diameter equal to 1 mm) in a glass tank containing distilled water, tap water or an aqueous solution of calcium carbonate. These liquids differ in the value of their surface tension, which influences the bubble size. During experimental investigations, air pressure fluctuations in the gas supply system were measured. Simultaneously, the videos showing the liquids’ penetration into the capillary were recorded. Based on the videos, the time series of liquid movements inside the capillary were recovered. The numerical models were used to study the influence of bubble size on the velocity of liquid flow above the capillary and the depth of liquid penetration into the capillary. It was shown that the air volume flow rate and the surface tension have the greatest impact on the changes of pressure during a single cycle of bubble departure (Δp). The changes in pressure during a single cycle of bubble departure determine the depth of liquid penetration into the capillary. Moreover, the values of Δp and, consequently, the depth of liquid penetration can be modified by perturbations in the liquid velocity above the capillary outlet.

Author(s):  
Stefan Schmid ◽  
Rudi Kulenovic ◽  
Eckart Laurien

For the validation of empirical models to calculate leakage flow rates in through-wall cracks of piping, reliable experimental data are essential. In this context, the Leakage Flow (LF) test rig was built up at the IKE for measurements of leakage flow rates with reduced pressure (maximum 1 MPA) and temperature (maximum 170 °C) compared to real plant conditions. The design of the test rig enables experimental investigations of through-wall cracks with different geometries and orientations by means of circular blank sheets with integrated cracks which are installed in the tubular test section of the test rig. In the paper, the experimental LF set-up and used measurement techniques are explained in detail. Furthermore, first leakage flow measurement results for one through-wall crack geometry and different imposed fluid pressures at ambient temperature conditions are presented and discussed. As an additional aspect the experimental data are used for the determination of the flow resistance of the investigated leak channel. Finally, the experimental results are compared with numerical results of WinLeck calculations to prove specifically in WinLeck implemented numerical models.


2021 ◽  
Vol 2021 ◽  
pp. 1-24
Author(s):  
Jiaming Lei ◽  
Jianmin Zhang ◽  
Lifang Zhang

The aerator can reduce erosion by mixing a large amount of air into the water in the solid wall area. The effectiveness of erosion reduction is mainly based on air concentration and its bubble size distribution. However, simultaneous simulation of the air concentration and its bubble size distribution in numerical simulations is still a hot and difficult area of research. Aiming at the downstream aerated flow of hydraulic aeration facilities, several numerical models, such as VOF, mixture, Euler, and Population Balance Model (PBM), are compared and verified by experiments. The results show that the CFD-PBM coupled model performs well compared to other conventional multiphase models. It can not only obtain the evolution law of the bubble distribution downstream of the aerator but also accurately simulate the recombination and evolution process of bubble aggregation and breakage. The Sauter mean diameter of the air bubbles in the aerated flow decreases along the way and eventually reaches a stable value. The bubble breakage is the main process in the development of the bubbles. It reveals the aeration law that the small air bubbles are closer to the bottom plate, while the large bubbles float up along the aerated flow, which provides a powerful support for the basic research on the mechanism of aeration and erosion reduction.


Sensors ◽  
2020 ◽  
Vol 20 (2) ◽  
pp. 413 ◽  
Author(s):  
Anh Chi Nguyen ◽  
Yves Weinand

Recent advances in timber construction have led to the realization of complex timber plate structures assembled with wood-wood connections. Although advanced numerical modelling tools have been developed to perform their structural analysis, limited experimental tests have been carried out on large-scale structures. However, experimental investigations remain necessary to better understand their mechanical behaviour and assess the numerical models developed. In this paper, static loading tests performed on timber plate shells of about 25 m span are reported. Displacements were measured at 16 target positions on the structure using a total station and on its entire bottom surface using a terrestrial laser scanner. Both methods were compared to each other and to a finite element model in which the semi-rigidity of the connections was represented by springs. Total station measurements provided more consistent results than point clouds, which nonetheless allowed the visualization of displacement fields. Results predicted by the model were found to be in good agreement with the measurements compared to a rigid model. The semi-rigid behaviour of the connections was therefore proven to be crucial to precisely predict the behaviour of the structure. Furthermore, large variations were observed between as-built and designed geometries due to the accumulation of fabrication and construction tolerances.


2020 ◽  
Vol 104 (2) ◽  
pp. 1581-1596
Author(s):  
Thomas Heinze

Abstract Dynamics of snow avalanches or landslides can be described by rapid granular flow. Experimental investigations of granular flow at laboratory scale are often required to analyze flow behaviour and to develop adequate mathematical and numerical models. Most investigations use image-based analysis, and additional sensors such as pressure gauges are not always possible. Testing various scenarios and parameter variations such as different obstacle shapes and positions as well as basal topography and friction usually requires either the construction of a new laboratory setups for each test or a cumbersome reconstruction. In this work, a highly flexible and modular laboratory setup is presented based on LEGO bricks. The flexibility of the model is demonstrated, and possible extensions for future laboratory tests are outlined. The setup is able to reproduce published laboratory experiments addressing current scientific research topics, such as overflow of a rigid reflector, flow on a bumpy surface and against a rigid wall using standard image-based analysis. This makes the setup applicable for quick scenario testing, e.g. for hypothesis testing or for low-cost testing prior to large-scale experiments, and it can contribute to the validation of external results and to benchmarks of numerical models. Small-scale laboratory setups are also very useful for demonstration purposes such as education and public outreach, both crucial in the context of natural hazards. The presented setup enables variation of parameters such as of slope length, channel width, height and shape, inclination, bed friction, obstacle position and shape, as well as density, composition, amount and grain size of flowing mass. Observable quantities are flow type, flow height, flow path and flow velocity, as well as runout distance, size and shape of the deposited material. Additional sensors allow further quantitative assessments, such as local pressure values.


Author(s):  
Witold Basiński

This study reports investigations into the effect of relative flexural stiffness of intermediate stiffeners γ on the failure zone location in the corrugated web. The study also aimed at obtaining stiffness criterion for intermediate stiffeners that depends on the magnitude of the plate geometry parameter α. To achieve the goals of the study, experimental investigations were conducted into load displacement paths of four exemplary SIN girders. They were simply supported girders, made to full scale, and composed of pre-assembled units. The phenomena occurring in the experiment were represented using the Finite Element Method. For FEM numerical analysis of girders with intermediate stiffeners, models with the web height of 1000, 1250 and 1500 mm, made from 2; 2.5 and 3 mm thick corrugated sheet metal were used. Due to the analysis of 52 girder numerical models, it was possible to propose the stiffness criterion of intermediate stiffeners. The criterion was based on the assessment of shear buckling strength of the corrugated web. Using the regression method, dimensionless coefficients of the stiffener stiffness ks dependent on the optimum stiffness γ were determined. Based on estimated coefficients of the stiffener stiffness ks, the absolute minimum stiffness of intermediate stiffeners Ismin used in corrugated web plate girders was calculated. It was demonstrated that the use of an intermediate stiffener, the stiffness of which is greater than Ismin , additionally leads to a change in the location of the site of the web shear buckling.


2011 ◽  
Vol 383-390 ◽  
pp. 7406-7412 ◽  
Author(s):  
Shi Bo Wang ◽  
Hua Wang ◽  
Jian Xin Xu ◽  
Dao Fei Zhu ◽  
Hui Sun ◽  
...  

The 3D numerical models of a single free falling bubble hitting water surface and multi bubbles floating upward and fusing have been achieved by considering the influences of surface tension and wall functions in theoretical framework of VOF. On that basis, the 3D hot-state numerical model for simulating top-blown bath in ISA furnace is presented. The influences of the injection flow rate and the depth of immersion on mixing behavior and temperature distribution are discussed. The results of this paper provide the reference of theory calculation of optimizing operation of ISA furnace.


1973 ◽  
Vol 95 (1) ◽  
pp. 17-22 ◽  
Author(s):  
C. H. Marks

Measurements were made of the effect of frequency of formation on the velocity of air bubbles rising in a chain through distilled water, lap water, and sugar water. In all cases, increasing the frequency increased the rise velocity for a given bubble size. Measurements made in distilled water showed that the increase of velocity with frequency dropped off with bubble size until it was negligible for the smaller bubbles. It was shown that the variation of bubble velocity with frequency and size can be fairly well correlated with the velocity of rise of solitary bubbles by means of a model based on turbulent wake theory. Tap-water measurements showed the same effect of impurities in the water on the bubble rise velocity as had been observed for solitary bubbles; however, the bubble radius at which the effect became apparent decreased with frequency. Measurements made in sugar water showed that the effect of fluid properties on the rise velocity decreased as frequency increased. At the highest frequencies, no difference could be seen between the distilled water and the sugar water rise velocity curves.


2010 ◽  
Vol 178 ◽  
pp. 86-91 ◽  
Author(s):  
Dong Mei Zhang ◽  
Jin Sheng Liang ◽  
Yan Ding ◽  
Can Li

Effect of activating device on the property of tap water was studied by surface tensiometer and pH meter. The results showed that the surface tension of tap water activated by the device reduced and pH value increased. The variations of surface tension and pH value are connected with flow rates. The larger flow rate, the less variation of surface tension and pH value when at the same cycle time, however, the more variation of surface tension and pH value when at the same activating time. Activated by the device, 17O NMR half width of tap water reduced from 70.79Hz at the inlet to 60.87Hz at the outlet. Reduction of surface tension were caused by hydrogen bonds in water clusters which were weakened or broken by far-infrared radiation of functional ceramic ball and galvanic cell action of copper-zinc alloy. Increment of pH value were caused by H+ in water exchanging with metal cations on surface of far-infrared ceramic balls and dissolved oxygen getting electron and forming OH-1 with the function of copper-zinc alloy.


Sign in / Sign up

Export Citation Format

Share Document