scholarly journals Escherichia coli as Possible Agents of Spread of Multidrug Resistance in Port Harcourt, Rivers State.

2019 ◽  
Vol 4 (1) ◽  
pp. 16-21
Author(s):  
Kome Otokunefor ◽  
Victor Ogechi Osogho ◽  
Chijindu Precious Nwankwo

AbstractMultidrug resistance (MDR) continues to be a growing global issue. The problem of MDR is fuelled in part by the spread of the genes encoding resistance horizontally which is linked particularly to conjugation involving plasmids. Studies have demonstrated the presence of plasmids in drug resistant isolates, few have shown a link between these plasmids and drug resistance via plasmid curing especially in our locale. This study set out to explore this link inEscherichia coliisolates from Port Harcourt, Nigeria. Plasmid curing was done on a selection of clinical and non-clinical bacteria using acridine orange and antibiotic susceptibility testing carried out on both cured and uncured variants. Data generated was analysed to ascertain the multiple antibiotic resistance (MAR) index and MDR of each isolate. Data was then compared to ascertain effects of plasmid curing on antibiotic resistance of the isolates. Results revealed a decrease in resistance to 7 of 8 antibiotics following plasmid curing. The highest change was noted in ceftazidime (40%), followed by ofloxacin (26.7%). Plasmid curing caused a shift in MAR index values of isolates from higher to lower indices. At MAR index values of ≤0.25 occurrence increased from 5% to 36.7% while at MAR index values ≥0.75, occurrence reduced from 29.9% to 10.0%. A reduction in the degree of MDR was noted (from 55% to 36.7%). Strikingly, the reduction in MDR level of non-clinical isolates was 30% as opposed to 3.4% in the clinical isolates. This study shows a link between plasmids and antibiotic resistance. For the non-clinical isolates, the high-level link between MDR and plasmid carriage could indicate a higher use of antimicrobials in non-clinical rather than clinical settings. Additionally, it could be an indicator for a higher risk of the transfer of MDR determinants from non-clinical sources to human populations in our locale.

2020 ◽  
Vol 4 (3) ◽  
pp. 323-327
Author(s):  
Mamunu Abdulkadir SULAIMAN ◽  
H.S Muhammad ◽  
Aliyu Muhammad Sani ◽  
Aminu Ibrahim ◽  
Ibrahim Muhammad Hussain ◽  
...  

Multidrug resistance (MDR) exhibited by some strains of Escherichia coli may be due to acquiring mobile genetic element (R-plasmid) by the bacteria, or intrinsically induced by inappropriate use of antibiotics by the hosts.  Infection by such strains may result to prolonged illness and greater risk of death. The study evaluated the impact of curing on antibiotic resistance on selected clinical isolates of E. coli. Twenty clinical isolates of E. coli from our previous studies were re-characterized using conventional microbiological techniques. Antibiotic sensitivity testing was determined by disk diffusion method, MDR selected based on resistance to ≥ 2 classes of antibiotics. Multiple antibiotic resistance (MAR) index was determined as ratio of the number of antibiotic resisted to the total number of antibiotics tested and considered significant if ≥. 0.2. The isolates that showed significant MAR index were subjected to plasmid curing using acridine orange, thereafter, profiled for plasmid and the cured ones were re-tested against the antibiotics they initially resisted. Out of the 20 isolates, 19 (95%) were confirmed as E. coli, all (100%) of which were MDRs, which was highest against augmentin (78.9%) followed by amoxacillin (52.6%). However, after the plasmid curing only 6 (31.6%) out of the 19 isolates cured retained significant MAR index and the level of the significance had reduced drastically in 16 (84.2%) isolates. Conclusively, curing assay can completely eliminate R-plasmid acquired resistance. More studied on plasmid curing agents for possible augmentation of the agents into antibiotics may see the rise of successful antibiotic era again.


2004 ◽  
Vol 48 (9) ◽  
pp. 3442-3450 ◽  
Author(s):  
Amera Gibreel ◽  
Dobryan M. Tracz ◽  
Lisa Nonaka ◽  
Trinh M. Ngo ◽  
Sean R. Connell ◽  
...  

ABSTRACT Of 203 human clinical isolates of Campylobacter jejuni from Alberta, Canada (1999 to 2002), 101 isolates (50%) were resistant to at least 64 μg of tetracycline/ml, with four isolates exhibiting higher levels of tetracycline resistance (512 μg/ml). In total, the MICs for 37% of tetracycline-resistant isolates (256 to 512 μg/ml) were higher than those previously reported in C. jejuni (64 to 128 μg/ml). In the tetracycline-resistant clinical isolates, 67% contained plasmids and all contained the tet(O) gene. Four isolates resistant to high levels of tetracycline (MIC = 512 μg/ml) contained plasmids carrying the tet(O) gene, which could be transferred to other isolates of C. jejuni. The tetracycline MICs for transconjugants were comparable to those of the donors. Cloning of tet(O) from the four high-level tetracycline-resistant isolates conferred an MIC of 32 μg/ml for Escherichia coli DH5α. In contrast, transfer to a strain of C. jejuni by using mobilization conferred an MIC of 128 μg/ml. DNA sequence analysis determined that the tet(O) genes encoding lower MICs (64 to 128 μg/ml) were identical to one other, although the tet(O) genes encoding a 512-μg/ml MIC demonstrated several nucleotide substitutions. The quinolone resistance determining region of four ciprofloxacin-resistant isolates (2%) was analyzed, and resistance was associated with a chromosomal mutation in the gyrA gene resulting in a Thr-86-Ile substitution. In addition, six kanamycin-resistant isolates contained large plasmids that carry the aphA-3 marker coding for 3′-aminoglycoside phosphotransferase. Resistance to erythromycin was not detected in 203 isolates. In general, resistance to most antibiotics in C. jejuni remains low, except for resistance to tetracycline, which has increased from about 8 to 50% over the past 20 years.


2020 ◽  
Vol 1 (2) ◽  
pp. 26-29
Author(s):  
Kome Otokunefor ◽  
Deborah Melex ◽  
Gideon Abu

Majority of bacterial communities exist as biofilms and these contribute to the survival of the bacteria. Biofilm development has been associated with protection from adverse environmental conditions and resistance to harmful agents. Generally, however data on biofilm-forming potential of bacteria in Nigeria is sparse. This study was therefore aimed at analyzing variations in biofilm-forming potential of Escherichia coli from various sources in Port Harcourt, Nigeria. Previously characterized clinical (30) and non-clinical (30) E. coli isolates were assessed for their biofilm-forming potential using the Congo Red agar method and variations in this potential determined as weak, moderate or strong. Majority of isolates (67%) had the potential to form biofilms but only 40% of isolates exhibiting biofilm-forming potential were from clinical sources. Isolates exhibited variable degrees of biofilm-forming potential, with only non-clinical isolates exhibiting strong potential. Majority of both clinical and non-clinical isolates (68.7% and 88% respectively) exhibited moderate biofilm-forming potential. The higher occurrence of E. coli exhibiting biofilm-forming potential among non-clinical isolates possibly reflects the essential role biofilms play in the survival of bacteria in nature, but not in infection cases. This study reports on a high level association between the isolates and biofilm production and highlights differences in the abilities of biofilm production between clinical and non-clinical isolates.  


2016 ◽  
Vol 65 (4) ◽  
pp. 83-89
Author(s):  
Nadezda S. Kozlova ◽  
Natalia E. Barantsevich ◽  
Elena P. Barantsevich

Relevance. Antimicrobial resistance in nosocomial strains currently presents a very important problem.  Aim of the study: Study of antibiotic resistance in Escherichia coli, isolated in a multidisciplinary centre.  Materials and Methods. Susceptibility of 151 E. coli strains to 15 antibiotics was studied by microdilution method. Results. The majority of the studied strains were resistant to antibiotics, including: ampicillin (57.0%), ciprofloxacin and moxifloxacin (42.4% each), III and IV generation cephalosporins (37.1% and 34.4%, respectively) and gentamycin (29.1%). The highest activity against E. coliwas shown for carbapenems (resistance to erthapenem – 2.6%, meropenem – 0.7%), in particular, for imipenem – no strains resistant to this drug were isolated. Resistance to amikacin and phosphomycin was low: 3.3% and 1.3% respectively. Wide diversity of antibiotic resistance spectra was revealed in studied strains, with a high level of multidrug resistance (48.0%). Conclusion. Study of susceptibility to antimicrobial agents in E. coli, isolated in a multidisciplinary centre, showed predominance of resistant strains with a high level of multidrug resistance. The appearance of carbapenem-resistant strains in a multidisciplinary centre presents a rising problem.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Yasuo Ohkoshi ◽  
Toyotaka Sato ◽  
Yuuki Suzuki ◽  
Soh Yamamoto ◽  
Tsukasa Shiraishi ◽  
...  

In recent years, multidrug resistance ofEscherichia colihas become a serious problem. However, resistance to fosfomycin (FOM) has been low. We screenedE. coliclinical isolates with reduced susceptibility to FOM and characterized molecular mechanisms of resistance and reduced susceptibility of these strains. Ten strains showing reduced FOM susceptibility (MIC ≥ 8 μg/mL) in 211 clinical isolates were found and examined. Acquisition of genes encoding FOM-modifying enzyme genes (fosgenes) and mutations inmurAthat underlie high resistance to FOM were not observed. We examined ability of FOM incorporation via glucose-6-phosphate (G6P) transporter andsn-glycerol-3-phosphate transporter. In ten strains, nine showed lack of growth on M9 minimum salt agar supplemented with G6P. Eight of the ten strains showed fluctuated induction by G6P ofuhpTthat encodes G6P transporter expression. Nucleotide sequences of theuhpT,uhpA, glpT,ptsI, andcyaAshared several deletions and amino acid mutations in the nine strains with lack of growth on G6P-supplemented M9 agar. In conclusion, reduction ofuhpTfunction is largely responsible for the reduced sensitivity to FOM in clinical isolates that have not acquired FOM-modifying genes or mutations inmurA. However, there are a few strains whose mechanisms of reduced susceptibility to FOM are still unclear.


2021 ◽  
Vol 12 ◽  
Author(s):  
Abebe Aseffa Negeri ◽  
Hassen Mamo ◽  
Jyoti M. Gurung ◽  
A. K. M. Firoj Mahmud ◽  
Maria Fällman ◽  
...  

The treatment of invasive Escherichia coli infections is a challenge because of the emergence and rapid spread of multidrug resistant strains. Particular problems are those strains that produce extended spectrum β-lactamases (ESBL’s). Although the global characterization of these enzymes is advanced, knowledge of their molecular basis among clinical E. coli isolates in Ethiopia is extremely limited. This study intends to address this knowledge gap. The study combines antimicrobial resistance profiling and molecular epidemiology of ESBL genes among 204 E. coli clinical isolates collected from patient urine, blood, and pus at four geographically distinct health facilities in Ethiopia. All isolates exhibited multidrug resistance, with extensive resistance to ampicillin and first to fourth line generation cephalosporins and sulfamethoxazole-trimethoprim and ciprofloxacin. Extended spectrum β-lactamase genes were detected in 189 strains, and all but one were positive for CTX-Ms β-lactamases. Genes encoding for the group-1 CTX-Ms enzymes were most prolific, and CTX-M-15 was the most common ESBL identified. Group-9 CTX-Ms including CTX-M-14 and CTX-27 were detected only in 12 isolates and SHV ESBL types were identified in just 8 isolates. Bacterial typing revealed a high amount of strains associated with the B2 phylogenetic group. Crucially, the international high risk clones ST131 and ST410 were among the sequence types identified. This first time study revealed a high prevalence of CTX-M type ESBL’s circulating among E. coli clinical isolates in Ethiopia. Critically, they are associated with multidrug resistance phenotypes and high-risk clones first characterized in other parts of the world.


2021 ◽  
Vol 8 ◽  
Author(s):  
Nurul Asyiqin Haulisah ◽  
Latiffah Hassan ◽  
Siti Khairani Bejo ◽  
Saleh Mohammed Jajere ◽  
Nur Indah Ahmad

Overuse of antimicrobials in livestock health and production beyond therapeutic needs has been highlighted in recent years as one of the major risk factors for the acceleration of antimicrobial resistance (AMR) of bacteria in both humans and animals. While there is an abundance of reports on AMR in clinical isolates from humans, information regarding the patterns of resistance in clinical isolates from animals is scarce. Hence, a situational analysis of AMR based on clinical isolates from a veterinary diagnostic laboratory was performed to examine the extent and patterns of resistance demonstrated by isolates from diseased food animals. Between 2015 and 2017, 241 cases of diseased livestock were received. Clinical specimens from ruminants (cattle, goats and sheep), and non-ruminants (pigs and chicken) were received for culture and sensitivity testing. A total of 701 isolates were recovered from these specimens. From ruminants, Escherichia coli (n = 77, 19.3%) predominated, followed by Staphylococcus aureus (n = 73, 18.3%). Antibiotic sensitivity testing (AST) revealed that E. coli resistance was highest for penicillin, streptomycin, and neomycin (77–93%). In addition, S. aureus was highly resistant to neomycin, followed by streptomycin and ampicillin (68–82%). More than 67% of E. coli isolates were multi-drug resistant (MDR) and only 2.6% were susceptible to all the tested antibiotics. Similarly, 65.6% of S. aureus isolates were MDR and only 5.5% were susceptible to all tested antibiotics. From non-ruminants, a total of 301 isolates were recovered. Escherichia coli (n = 108, 35.9%) and Staphylococcus spp. (n = 27, 9%) were the most frequent isolates obtained. For E. coli, the highest resistance was against amoxicillin, erythromycin, tetracycline, and neomycin (95–100%). Staphylococcus spp. had a high level of resistance to streptomycin, trimethoprim/sulfamethoxazole, tetracycline and gentamicin (80–100%). The MDR levels of E. coli and Staphylococcus spp. isolates from non-ruminants were 72.2 and 74.1%, respectively. Significantly higher resistance level were observed among isolates from non-ruminants compared to ruminants for tetracycline, amoxicillin, enrofloxacin, and trimethoprim/sulfamethoxazole.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Neha Giri ◽  
Anchal Lodhi ◽  
Devendra Singh Bisht ◽  
Suvarna Bhoj ◽  
Deepak Kumar Arya

Researchers have encountered new challenges with the discovery of multiple drug resistance in microbes. Currently, multidrug resistant bacteria are considered a major public health concern and an emerging global epidemic. Presence of Escherichia coli in water is used as a faecal pollution measure. In this study E. coli isolates were collected from 20 sample collection sites at Lake Nainital. 20 E. coli isolates, 1 from each sample collection sites, were examined for their antibiotic response patterns against a panel of widely used 15 antibiotics. The result of this study showed 100% resistance to Penicillin G followed by Erythromycin (80%). All isolates (100%) were found susceptible for Gentamycin. The susceptibilities for Chloramphenicol and Co-trimoxazaole were found next to Gentamycin as 90 and 85% respectively. Multiple antibiotic resistance (MAR) index was also determined. 0.73 MAR index was observed as highest in 1 isolate. 13 out of 20 isolates had more than 0.2 MAR indices. The result reveals the origin of E. coli isolates from an area of high antibiotics use.


2011 ◽  
Vol 55 (9) ◽  
pp. 4267-4276 ◽  
Author(s):  
Vinod Kumar ◽  
Peng Sun ◽  
Jessica Vamathevan ◽  
Yong Li ◽  
Karen Ingraham ◽  
...  

ABSTRACTThere is a global emergence of multidrug-resistant (MDR) strains ofKlebsiella pneumoniae, a Gram-negative enteric bacterium that causes nosocomial and urinary tract infections. While the epidemiology ofK. pneumoniaestrains and occurrences of specific antibiotic resistance genes, such as plasmid-borne extended-spectrum β-lactamases (ESBLs), have been extensively studied, only four complete genomes ofK. pneumoniaeare available. To better understand the multidrug resistance factors inK. pneumoniae, we determined by pyrosequencing the nearly complete genome DNA sequences of two strains with disparate antibiotic resistance profiles, broadly drug-susceptible strain JH1 and strain 1162281, which is resistant to multiple clinically used antibiotics, including extended-spectrum β-lactams, fluoroquinolones, aminoglycosides, trimethoprim, and sulfamethoxazoles. Comparative genomic analysis of JH1, 1162281, and other publishedK. pneumoniaegenomes revealed a core set of 3,631 conserved orthologous proteins, which were used for reconstruction of whole-genome phylogenetic trees. The close evolutionary relationship between JH1 and 1162281 relative to otherK. pneumoniaestrains suggests that a large component of the genetic and phenotypic diversity of clinical isolates is due to horizontal gene transfer. Using curated lists of over 400 antibiotic resistance genes, we identified all of the elements that differentiated the antibiotic profile of MDR strain 1162281 from that of susceptible strain JH1, such as the presence of additional efflux pumps, ESBLs, and multiple mechanisms of fluoroquinolone resistance. Our study adds new and significant DNA sequence data onK. pneumoniaestrains and demonstrates the value of whole-genome sequencing in characterizing multidrug resistance in clinical isolates.


2020 ◽  
Vol 8 (10) ◽  
pp. 1626
Author(s):  
Mahfouz Nasser ◽  
Snehal Palwe ◽  
Ram Naresh Bhargava ◽  
Marc G. J. Feuilloley ◽  
Arun S. Kharat

The production of diverse and extended spectrum β-lactamases among Escherichia coli and ESKAPE pathogens is a growing threat to clinicians and public health. We aim to provide a comprehensive analysis of evolving trends of antimicrobial resistance and β-lactamases among E. coli and ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acine to bacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) in the Arabian region. A systematic review was conducted in Medline PubMed on papers published between January 2000 and February 2020 on countries in the Arab region showing different antibiotic resistance among E. coli and ESKAPE pathogens. A total of n = 119,144 clinical isolates were evaluated for antimicrobial resistance in 19 Arab countries. Among these clinical isolates, 74,039 belonged to E. coli and ESKAPE pathogen. Distribution of antibiotic resistance among E. coli and ESKAPE pathogens indicated that E. coli (n = 32,038) was the predominant pathogen followed by K. pneumoniae (n = 17,128), P. aeruginosa (n = 11,074), methicillin-resistant S. aureus (MRSA, n = 4370), A. baumannii (n = 3485) and Enterobacter spp. (n = 1574). There were no reports demonstrating Enterococcus faecium producing β-lactamase. Analyses revealed 19 out of 22 countries reported occurrence of ESBL (Extended-Spectrum β-Lactamase) producing E. coli and ESKAPE pathogens. The present study showed significantly increased resistance rates to various antimicrobial agents over the last 20 years; for instance, cephalosporin resistance increased from 37 to 89.5%, fluoroquinolones from 46.8 to 70.3%, aminoglycosides from 40.2 to 64.4%, mono-bactams from 30.6 to 73.6% and carbapenems from 30.5 to 64.4%. An average of 36.9% of the total isolates were reported to have ESBL phenotype during 2000 to 2020. Molecular analyses showed that among ESBLs and Class A and Class D β-lactamases, blaCTX-M and blaOXA have higher prevalence rates of 57% and 52.7%, respectively. Among Class B β-lactamases, few incidences of blaVIM 27.7% and blaNDM 26.3% were encountered in the Arab region. Conclusion: This review highlights a significant increase in resistance to various classes of antibiotics, including cephalosporins, β-lactam and β-lactamase inhibitor combinations, carbapenems, aminoglycosides and quinolones among E. coli and ESKAPE pathogens in the Arab region.


Sign in / Sign up

Export Citation Format

Share Document