scholarly journals Tetracycline Removal from Water by Adsorption on Geomaterial, Activated Carbon and Clay Adsorbents

2021 ◽  
Vol 28 (3) ◽  
pp. 303-328
Author(s):  
Souhila Ait Hamoudi ◽  
Boualem Hamdi ◽  
Jocelyne Brendlé

Abstract The use of antibiotics for breeding and for humans increased considerably in recent years, as a dietary supplement to enhance animal growth. This frequent use leads to the detection of residues in water and wastewater. Thus, the emergence of new strains of bacteria resistant to these antibiotics and, can lead to incurable diseases of livestock, and can lead to a possible transmission of these strains to humans. The purpose of this work is to develop new materials based on treated Maghnia clay, activated carbon, cement, and PVA polymer, named geomaterials. These materials were intended for the containment of hazardous wastes in landfills. The removal of tetracycline from aqueous solution was tested by adsorption onto synthesised geomaterials and their mineral constituents. Adsorption kinetics revealed that tetracycline was rapidly retained by GM and ATMa. This was confirmed by the relatively short equilibrium time of 30 min. The pseudo-second-order and intraparticle models well fitted the adsorption kinetic of the TC-adsorbent studied systems. It was noticed that the adsorption kinetic passes through several mechanisms, was demonstrated by the multi-linearity on the plot of qt against the square root of t. The adsorption capacity (Qa ) of TC onto GM is pH-dependent. Indeed, Qa reaches a maximum value (Qa = 12.58 mg ∙ g–1 at a very acidic pH of 2, then the adsorbed amount decreases to reach a minimum value at pH of 8, and for basic pHsQa increases up to 10 mg ∙ g–1.

2016 ◽  
Vol 75 (2) ◽  
pp. 474-481 ◽  
Author(s):  
Sina Dobaradaran ◽  
Iraj Nabipour ◽  
Mozhgan Keshtkar ◽  
Fatemeh Faraji Ghasemi ◽  
Tayebeh Nazarialamdarloo ◽  
...  

The aim of this study was to determine adsorption properties of cuttlebone, cuttlefish bone as dead biomass, for lead(II) and copper(II) from aqueous solutions. Adsorption kinetic, isotherm and effect of pH (in the range of 2.0–7.0) were investigated in a single component batch system at room temperature (25 ± 1 °C). The heavy metal adsorption by cuttlebone was relatively rapid and reached equilibrium in 120 min in all the cases. The pseudo-second order rate equation described the adsorption kinetic of both the ions. The adsorption capacities of Pb2+ and Cu2+ were constantly increased by pH and the optimum condition of pH was determined to be 7.0. The Freundlich model was better fitted than other models with the isotherm data, indicating sorption of the metal ions in a heterogeneous surface. According to the Langmuir model, the maximum adsorption capacities of cuttlebone for Pb2+ and Cu2+ were determined to be 45.9 and 39.9 mg/g, respectively. The results indicated cuttlebone as a promising adsorbent for Pb2+ and Cu2+, which presents a high capacity of self-purification in marine environments and also can be used for removal of the metal ions from water and wastewater.


Author(s):  
Alica Pastierová ◽  
Maroš Sirotiak

Abstract This paper presents a study into dynamic behaviour of the methylene blue adsorption (MB) on activated carbon. Effect of four parameters were studied: effect of the adsorbent dosage, effect of contact time, effect of pH, and effect of the initial concentration of methylene blue. The adsorption kinetic data were modelled using the pseudo-first and pseudo-second orders. Results show that, based on the experimental data, the pseudo-second order could be considered satisfactory. Thermodynamic parameters proved that adsorption of dye was spontaneous owing to increase in temperature and endothermic nature. Taguchi method was applied to determine the optimum conditions for removal of methylene blue by activated carbon. The optimum conditions were found to be pH = 7, contact time 60 min, initial concentration of MB 4 mg/L.


2020 ◽  
Vol 21 (5) ◽  
pp. 1563 ◽  
Author(s):  
Nuhu Dalhat Mu’azu ◽  
Mukarram Zubair ◽  
Nabeel Jarrah ◽  
Omar Alagha ◽  
Mamdouh A. Al-Harthi ◽  
...  

This work reports the synthesis of new layered double hydroxide (LDH) composites using sewage-based ZnCl2-activated carbon (AC) intercalated with MgFe (AC-MgFe-LDH) and an evaluation of their adsorptive performance for phenol removal from water. The effect of the AC loading on the final properties of synthesized composites was investigated via various characterization techniques. The results showed efficient decoration at 0.1–0.25 g AC loading within the layers of AC–MgFe composites LDH, which was reflected in the higher surface area (233.75 m2/g) and surface functionalities (OH, NO3, C-O-C, and MMO) yielding a significant improvement of the phenol removal efficiency. However, at higher contents, AC loading led to the breakage of the LDH structure and agglomeration, as indicated by the deterioration in the textural and structural properties. The isotherm and kinetic data were well fitted by the Langmuir and pseudo-second-order model, respectively, with a maximum obtained monolayer adsorption capacity of 138.69 mg/g. The thermodynamics results demonstrated that phenol adsorption is an endothermic process. The sorption mechanism of phenol molecules on the AC–MgFe composite was governed by chemical bonding with OH, C=O, and MMO groups and pore diffusion via π–π interactions. Superior phenol removal with excellent recyclability up to five cycles of the new AC–MgFe composite suggested its use as a potential adsorbent for effective phenol removal from water and wastewater streams.


2013 ◽  
Vol 295-298 ◽  
pp. 1161-1167
Author(s):  
Ming Xia Fan ◽  
Kun Wang ◽  
Ya Zhou Wang ◽  
Dan Qing Yu

In the present investigation, lab-made mesoporous activated carbon (MAC) was prepared for testing the ability to remove Cr(VI) from aqueous solution. The influences of several operating parameters such as pH and temperature on the adsorption were investigated. Solution pH is found highly influencing the adsorption and low pH is favorable for Cr(VI) adsorption. The adsorption of Cr(VI) is enhanced with increased temperature. Thermodynamic parameters were evaluated and the adsorption was endothermic. Several adsorption isotherms include Langmuir, Freundlich and Dubinin–Radushkevich(D–R) were used to fit the equilibrium data. The adsorption kinetic data of Cr(VI) were analyzed and was found fitting well in pseudo-second order equation. The lab-made MAC is found to be effective adsorbent for removal of Cr(VI) from aqueous solutions.


2012 ◽  
Vol 610-613 ◽  
pp. 1971-1974
Author(s):  
Zeng Yin Zhu ◽  
Bing Li ◽  
Hai Suo Wu ◽  
Wei Liu ◽  
Jin Wei

As the toxicity even at low concentrations, pollution of phenolic compounds has become an issue of international concern. Adsorption has been proven to be the effective and widely used method for phenolic compounds removal. In this study, porous resins as adsorbents for the removal of hydroquinone from aqueous solutions were evaluated. Activated carbon F400D was employed for comparison. The faster adsorption kinetic was observed on the mesoporous XAD-4, while the higher adsorption capacity was obtained on the microporous NDA150, which had larger surface area. Despite the different surface properties and pore structures of the studied adsorbents, similar trends of pH-dependent adsorption were observed, implying the importance of the hydroquinone molecular species to the adsorption onto the porous adsorbents. This work provided an understanding of adsorption behavior of hydroquinone on porous adsorbents.


2020 ◽  
Vol 5 (3) ◽  
Author(s):  
Eka Purnawan ◽  
Abrar Muslim ◽  
Nasrullah Razali ◽  
Muhammad Zaki ◽  
Hesti Meilina ◽  
...  

This research proposed a method to produce activated carbon from rice husk by carbonation process, physical activation and chemical activation using NaOH. The performance of activated carbon was tested by batch experiments in which the adsorption system contained 1 g of rice husk activated carbon in 100 mL of artificial wastewater with initial concentration of Cu(II) ion being 148.26 mg/L, initial pH 6, at 27 oC and 1 atm to determine the efficiency of reducing Cu(II) ion over the contact time and presence of stirring on chemical activation. The results showed that the efficiency of reducing Cu(II) ion by rice husk activated carbon increased exponentially with increasing contact time with a maximum value of 74.33% at 90 minutes of contact time. The results also showed that stirring on chemical activation increased the efficiency of Cu(II) ion reduction by 14.94%. Adsorption kinetics studies showed that Cu(II) ion reduction followed the pseudo-second order adsorption equation with the adsorption capacity of 10.18 mg/g and  adsorption rate constant of 0.0013 g/mg.min for rice husk activated carbon without stirring in the chemical activation. Stirring in the chemical activation.increased the capacity and rate of adsorption constant to 12.07 mg/g and 0.0052 g/mg.min, respectively.


2015 ◽  
Vol 14 (04) ◽  
pp. 1550009 ◽  
Author(s):  
N. M. Mubarak ◽  
Y. T. Fo ◽  
Hikmat Said Al-Salim ◽  
J. N. Sahu ◽  
E. C. Abdullah ◽  
...  

The study on the removal of methylene blue (MB) and orange-G dyes using magnetic biochar derived from the empty fruit bunch (EFB) was carried out. Process parameters such as pH, adsorbent dosage, agitation speed and contact time were optimized using Design-Expert Software v.6.0.8. The statistical analysis reveals that the optimum conditions for the maximum adsorption of MB are at pH 2 and pH 10, dosage 1.0 g, and agitation speed and contact time of 125 rpm and 120 min respectively. While for orange-G, at pH 2, dosage 1.0 g, and agitation speed and contact time of 125 rpm and 120 min respectively. The maximum adsorption capacity of 31.25 mg/g and 32.36 mg/g for MB and orange-G respectively. The adsorption kinetic for both dyes obeyed pseudo-second order.


Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1907
Author(s):  
Fatma Hussain Emamy ◽  
Ali Bumajdad ◽  
Jerzy P. Lukaszewicz

Optimizing the physicochemical properties of the chitosan-based activated carbon (Ch-ACs) can greatly enhance its performance toward heavy metal removal from contaminated water. Herein, Ch was converted into a high surface area (1556 m2/g) and porous (0.69 cm3/g) ACs with large content of nitrogen (~16 wt%) using K2CO3 activator and urea as nitrogen-enrichment agents. The prepared Ch-ACs were tested for the removal of Cr(VI) and Pb(II) at different pH, initial metal ions concentration, time, activated carbon dosage, and temperature. For Cr(VI), the best removal was at pH = 2, while for Pb(II) the best pH for its removal was in the range of 4–6. At 25 °C, the Temkin model gives the best fit for the adsorption of Cr(VI), while the Langmuir model was found to be better for Pb(II) ions. The kinetics of adsorption of both heavy metal ions were found to be well-fitted by a pseudo-second-order model. The findings show that the efficiency and the green properties (availability, recyclability, and cost effectiveness) of the developed adsorbent made it a good candidate for wastewaters treatment. As preliminary work, the prepared sorbent was also tested regarding the removal of heavy metals and other contaminations from real wastewater and the obtained results were found to be promising.


2012 ◽  
Vol 14 (4) ◽  
pp. 88-94 ◽  
Author(s):  
R.P. Suresh Jeyakumar ◽  
V. Chandrasekaran

Abstract In this work, the efficiency of Ulva fasciata sp. activated carbons (CCUC, SCUC and SSUC) and commercially activated carbon (CAC) were studied for the removal of Cu (II) ions from synthetic wastewater. Batch adsorption experiments were carried out as a function of pH, contact time, initial copper concentration and adsorbent dose. The percentage adsorption of copper by CCUC, SSUC, SCUC and CAC are 88.47%, 97.53%, 95.78% and 77.42% respectively. Adsorption data were fitted with the Langmuir, Freundlich and Temkin models. Two kinetic models pseudo first order and the pseudo second order were selected to interpret the adsorption data.


Sign in / Sign up

Export Citation Format

Share Document