scholarly journals Sewage Sludge ZnCl2-Activated Carbon Intercalated MgFe–LDH Nanocomposites: Insight of the Sorption Mechanism of Improved Removal of Phenol from Water

2020 ◽  
Vol 21 (5) ◽  
pp. 1563 ◽  
Author(s):  
Nuhu Dalhat Mu’azu ◽  
Mukarram Zubair ◽  
Nabeel Jarrah ◽  
Omar Alagha ◽  
Mamdouh A. Al-Harthi ◽  
...  

This work reports the synthesis of new layered double hydroxide (LDH) composites using sewage-based ZnCl2-activated carbon (AC) intercalated with MgFe (AC-MgFe-LDH) and an evaluation of their adsorptive performance for phenol removal from water. The effect of the AC loading on the final properties of synthesized composites was investigated via various characterization techniques. The results showed efficient decoration at 0.1–0.25 g AC loading within the layers of AC–MgFe composites LDH, which was reflected in the higher surface area (233.75 m2/g) and surface functionalities (OH, NO3, C-O-C, and MMO) yielding a significant improvement of the phenol removal efficiency. However, at higher contents, AC loading led to the breakage of the LDH structure and agglomeration, as indicated by the deterioration in the textural and structural properties. The isotherm and kinetic data were well fitted by the Langmuir and pseudo-second-order model, respectively, with a maximum obtained monolayer adsorption capacity of 138.69 mg/g. The thermodynamics results demonstrated that phenol adsorption is an endothermic process. The sorption mechanism of phenol molecules on the AC–MgFe composite was governed by chemical bonding with OH, C=O, and MMO groups and pore diffusion via π–π interactions. Superior phenol removal with excellent recyclability up to five cycles of the new AC–MgFe composite suggested its use as a potential adsorbent for effective phenol removal from water and wastewater streams.

2011 ◽  
Vol 704-705 ◽  
pp. 486-491
Author(s):  
Yi Nan Hao ◽  
Xi Ming Wang ◽  
Li Jun Ding ◽  
Da Yan Ma

Xanthoceras Sorbifolia Bunge hull activated carbon (XSBHAC) developed by phosphoric acid activation for removing basic fuchsin (BF) has been investigated. Experiments were carried out as function of contact time, pH (4-10) and temperature (303,313 and 323K). Adsorption isotherms were modeled with the Langmuir and Freundlich isotherms. The data fitted well with the Langmuir isotherm. The Langmuir monolayer saturation capacities of BF adsorbed onto activated carbon were 351.35, 354.96 and 355.94 mg/g at 303,313, and 323 K, respectively.The kinetic models were also studied .The rates of adsorption were found to conform to the pseudo-second-order kinetics with good correlation.Using the equilibrium concentration contents obtained at different temperatures, various thermodynamic parameters,such as △G,△H and △S, have been calculated. The thermodynamics parameters of system indicated spontaneous and endothermic process. Key words: Xanthoceras sorbifolia bunge hull;biosorption; basic fuchsin


Water ◽  
2021 ◽  
Vol 13 (17) ◽  
pp. 2394
Author(s):  
Rosa Devesa-Rey ◽  
Jesús del Val ◽  
Jorge Feijoo ◽  
José González-Coma ◽  
Gonzalo Castiñeira ◽  
...  

The main objective of this study consists in the synthesis of a layered double hydroxide (LDH) clay doped with magnesium and aluminum in order to test the removal of phosphates and ibuprofen in water. Two different LDH composites are assessed: oven-dried (LDHD) and calcined (LDHC). Single adsorptions of phosphate and ibuprofen showed up to 70% and 58% removal in water, when LDHC was used. A poorer performance was observed for LDHD, which presented adsorption efficiencies of 52% and 35%, respectively. The simultaneous removal of phosphate and ibuprofen in water showed that LDHC allows a greater reduction in the concentration of both compounds than LDHD. Phosphate adsorption showed a close agreement between the experimental and theoretical capacities predicted by the pseudo-second-order model, whereas ibuprofen fitted to a first-order model. In addition, phosphate adsorption showed a good fit to an intraparticle diffusion model and to Bangham model suggesting that diffusion into pores controls the adsorption process. No other mechanisms may be involved in ibuprofen adsorption, apart from intraparticle diffusion. Finally, phosphate desorption could recover up to 59% of the initial concentration, showing the feasibility of the recuperation of this compound in the LDH.


BioResources ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. 6781-6790
Author(s):  
Moammar Elbidi ◽  
Agab Hewas ◽  
Rajab Asar ◽  
Mohamad Amran Mohd Salleh

Removal of phenol from wastewater using local biochar (BC) was investigated, while using activated carbon (AC) as a reference material. The main parameters affecting the sorption process were initial concentration, contact time, pH, and temperature. Statistical analysis of the results showed that the maximum removal percent when using AC and BC were 95% and 55%, respectively. Experimental data showed that the removal of phenol has fast kinetics and reached equilibrium within 5 minutes. The Langmuir and Freundlich isotherm models were applied to fit the adsorption experimental data. Pseudo-first order and pseudo-second order kinetic models were employed.


2016 ◽  
Vol 54 (6) ◽  
pp. 737
Author(s):  
Tran Ngoc Tuyen ◽  
Nguyen Duc Vu Quyen ◽  
Ho Van Minh Hai ◽  
Tran Ngoc Quang ◽  
Hoang Trong Sy ◽  
...  

The fluoride adsorption on aluminum hydroxide coated rice husk ash material (RHA/Al(OH)3) was demonstrated in this study. The isothermal data indicated that the Langmuir model well described the adsorption system with the maximum monolayer adsorption capacity of 8.2 mg.g-1. The kinetic results revealed that the pseudo-second-order rate model fitted the experiments data better than the pseudo-first-order one. Furthermore, the adsorption of fluoride onto this material may be the chemical adsorption. Thermodynamic parameters (DG and DH) in the range of temperature from 30 to 70oC showed that the adsorption was a spontaneous and an endothermic process. RHA/Al(OH)3 could be used for well-treatment of fluoride contaminated well-water sampling in Ninhhoa district (Khanhhoa province). With the initial content of fluoride of 6.1 mg.L-1 and after 2 hours of treating with the dose of 4.0 ¸ 7.0 g.L-1, the concentration of fluoride in the samples decreased to 0.5 ¸ 1.5 g.L-1, that met acceptable limit of WHO.


2020 ◽  
Vol 13 (2) ◽  
pp. 080-090
Author(s):  
Daniel Eneji Sani ◽  
John O. Idoko ◽  
Enyojo Samson Okwute ◽  
Matthew Chijioke Apeh

Unactivated adsorbent was prepared from Moringa oleifera seed shells precursor, characterized and evaluated for aqueous phase removal of phenol. The effects of operational parameters such as initial phenolic solution pH and adsorbent dosage on equilibrium sorption were studied. Adsorption isotherms and kinetic experiments performed at (25 oC) furnished some equilibrium and kinetic parameters, respectively. UAMSS shows favorable attributes on (pH, bulk density, attrition, iodine number/surface area, surface charge/functional groups and Fourier transform infrared FTIR). Phenol uptake decreases with increase in solution pH for the adsorbent. Maximum adsorption capacity Qmax (mg/g) was (6.95). The optimal pH for phenol adsorption was attained at pH 3, adsorption kinetics obeyed closely pseudo-second-order model. Adsorption of phenol was well described by Langmuir isotherm. The adsorbent shows a promise of applicability in dephenolation of aqueous effluents/wastewater.


2021 ◽  
Vol 920 (1) ◽  
pp. 012010
Author(s):  
F Fadzail ◽  
M Hasan ◽  
Z Mokhtar ◽  
N Ibrahim ◽  
O S An ◽  
...  

Abstract Removal of ketoprofen using Dillenia Indica peel activated carbon was investigated using batch adsorption at a laboratory scale. Chemical activation method with the aid of phosphoric acid was utilised in preparing the activated carbon. The adsorption experiments were evaluated using various factors which, are initial concentration, adsorbent dosage, and pH of ketoprofen. The optimum condition was determined to be at pH 6 and adsorbent dosage of 0.4 g with a most KTP uptake of 8.354 mg/g. The experimental findings showed that adsorption is favorable at lower pH. Isotherm studies were conducted and the data indicated that Langmuir isotherm was well fitted to the adsorption process and the pseudo-second-order model was more preferable in simulating the kinetic process. In essence, Dillenia Indica peel activated carbon was proven as being a favourable adsorbent for the uptake of ketoprofen in batch mode.


2017 ◽  
Vol 753 ◽  
pp. 243-248 ◽  
Author(s):  
Noorul Farhana Md Ariff ◽  
Megat Ahmad Kamal Megat Hanafiah ◽  
Wan Saime Wan Ngah

In this study, cross-linked chitosan coated bentonite (CCB) beads were prepared as a potential adsorbent to adsorb Cu(II) from aqueous solution. As adsorption capacity was affected by several conditions such as initial Cu(II) concentrations, stirring period and temperature, these parameters were important to be investigated. Three different concentrations of Cu(II) were used in the kinetic study, which were 10, 25 and 50 mg/L. The experimental data was found fitted well with the pseudo-second-order model, an indication that chemisorption was the rate controlling mechanism. Isotherm study was done at different temperatures with concentration of Cu(II) was varied from 10 to 200 mg/L. The maximum monolayer adsorption of Cu(II) on CCB beads based on Langmuir isotherm model at 300, 310 and 320 K were 114.94, 119.05 and 77.52 mg/g, respectively. Therefore, adsorption of Cu(II) was preferred at lower temperatures. This work proved CCB beads as an effective adsorbent for fast removal of Cu(II) from wastewater solutions.


2005 ◽  
Vol 23 (4) ◽  
pp. 289-302 ◽  
Author(s):  
Elio E. Gonzo ◽  
Luis F. Gonzo

A pseudo-second-order rate equation describing the kinetic adsorption of phenol onto peanut shell acid-activated carbon at different initial concentrations, carbon dosages and particle sizes has been developed. The adsorption kinetics were followed on the basis of the amount of phenol adsorbed at various time intervals at 22°C. The rate constant and the equilibrium adsorption capacity were calculated. From these parameters, empirical correlations for predicting the equilibrium adsorption capacity as a function of the C0/D ratio, and for estimating the rate constant as a function of the relation D/(C0dp)0.5, were derived. This allowed a general rate expression for design purposes to be obtained which was valid for C0/D ≤ 1.5. The operation line for each case studied was constructed and the equilibrium adsorption capacity obtained. A comparison was undertaken with the experimental adsorption isotherm as previously determined. The effect of the initial phenol concentration, the carbon dose and the particle size on the initial adsorption rate was also analyzed.


Processes ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 1242
Author(s):  
Hanedi Elhleli ◽  
Faten Mannai ◽  
Mongi ben Mosbah ◽  
Ramzi Khiari ◽  
Younes Moussaoui

Activated carbon obtained from Opuntia ficus indica by sodium hydroxide activation was employed for the adsorption of p-nitrophenol from water. The activated carbons obtained were characterized by Fourier transforms infrared spectroscopy, sorption of nitrogen, scanning electron microscopy, and Boehm titration. Effects of pH, contact time, amount of adsorbent, and temperature on the adsorption of p-nitrophenol were studied. Adsorption isotherms were analyzed using Freundlich, Langmuir, Temkin, and Dubinin-Radushkevich models, and the thermodynamic parameters have been determined. The adsorption of p-nitrophenol was spontaneous, exothermic, and propitious at 15 °C and adopted the pseudo-second order model, and the most credible isotherm was Langmuir’s one. The activated carbon used in this work has good p-nitrophenol adsorption characteristics, and the study of the desorption and reuse of this carbon shows that it retains a removal rate greater than 94% after five cycles of adsorption-desorption.


Polymers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 2496
Author(s):  
Keyan Yang ◽  
Jingchen Xing ◽  
Jianmin Chang ◽  
Fei Gu ◽  
Zheng Li ◽  
...  

An eco-friendly and novel water treatment material was synthesized using sodium lignosulfonate modified polystyrene (SLPS), which can be used to eliminate phenols in aqueous solution. SLPS was characterized by BET, FTIR, SEM, and EDS. The effect of the initial pH value, phenol content, adsorption time, and temperature on the absorbability of phenol in SLPS was investigated through adsorption experiments. It was found that SLPS could efficiently adsorb phenol in aqueous solution at a pH value of about 7. The test results revealed that the kinetic adsorption and isotherm adsorption could be successfully described using the pseudo second-order and Langmuir models, respectively. It was illustrated that the phenol adsorption on SLPS was dominated by chemisorption and belonged to monolayer adsorption. The max. phenol adsorption value of SLPS was 31.08 mg/g at 30 °C. Therefore, SLPS displayed a great potential for eliminating phenol from polluted water as a kind of novel and effective adsorbent.


Sign in / Sign up

Export Citation Format

Share Document