scholarly journals Landscape diversity and biodiversity of Fann Mountains (Tajikistan)

2013 ◽  
Vol 32 (4) ◽  
Author(s):  
Oimahmad Rahmonov ◽  
Leszek Majgier ◽  
Wiaczesław Andrejczuk ◽  
Jarosław Banaszek ◽  
Dominik Karkosz ◽  
...  

AbstractRahmonov O., Majgier L., Andrejczuk W., Banaszek J., Karkosz D., Parusel T., Szymczyk A.: Landscape diversity and biodiversity of Fann Mountains (Tajikistan). Ekologia (Bratislava), Vol. 32, No. 4, p. 388-395, 2013.The aim of study is a presentation of main vegetation landscape diversity and biodiversity in case of endemic species in the Fann Mountains area, in horizontal and vertical approach. In terms of biodiversity, the high-mountain ecosystems of Central Asia include the most valuable areas in the world called as hotspot, and also are exposed to intense human pressure causing the destruction of habitats. Vegetation landscapes of Fann Mountains are very diverse because of high-mountain character of this area, local climatic conditions, topography and habitats. That differentiation leads up to biodiversity and formation of unique plant landscapes and endemic species. The vegetation landscapes in altitude order are represented by forbs meadow steppe, thymes, swamp, broad-leaf forest, juniper forests, flood-plain small-leaved forest, tugai, light deciduous forest, pistachio, forbs wormwood, almond, rare vegetation with cushion-shaped species, wormwood eurotia, steppe, thorny grasses with shrub-steppe, rocks and taluses with rare vegetation alpine zones. High level of endemism in Fann Mountains is connected to natural conditions such as geological structure, relief, high-mountain ranges and climate conditions. This fact has an influence on forming mosaic biotops, often isolated by orographic barriers.

2021 ◽  
Vol 16 (1) ◽  
pp. 117-127
Author(s):  
S. N. Volkov ◽  
S. V. Savinova ◽  
E. V. Cherkashina ◽  
D. A Shapovalov ◽  
V. V. Bratkov ◽  
...  

Аim. Assessment of current climate changes in the territory of Ciscaucasia in order to predict the yield of winter wheat.Methods .Integral indicators of climatic conditions for agricultural production were employed. For the investigations, we selected five‐year periods for which the meteorological parameters were averaged, and to identify trends the data of specific five‐year periods were compared with the average value for the entireseries of observations (1960‐2020).Results. The deviation of precipitation in April was highest in 2011‐2015, when it increased by 22 mm, and in 1986‐1990 and 1991‐1995, when it decreased by 15 and 10 mm respectively. In Eastern Ciscaucasia,where conditions are more arid than in the Western and Central regions, in both the rise in air temperature and the amount of precipitation, especially in April and May, increased in the 21stcentury for the entire period of active vegetation.Conclusion.It was established that the value of the hydrothermal coefficient practically did not change during the 1960‐2020 period. In the late 1990s and early 2000s, there was an increase in productivity against the background of a relatively high level of annual precipitation and this stability is confirmed at the present time. There is a very close relationship between natural and climatic factors and the level of winter wheat yield.


2009 ◽  
Vol 3 (1) ◽  
pp. 85-99 ◽  
Author(s):  
J. Noetzli ◽  
S. Gruber

Abstract. In high mountain areas, permafrost is important because it influences the occurrence of natural hazards, because it has to be considered in construction practices, and because it is sensitive to climate change. The assessment of its distribution and evolution is challenging because of highly variable conditions at and below the surface, steep topography and varying climatic conditions. This paper presents a systematic investigation of effects of topography and climate variability that are important for subsurface temperatures in Alpine bedrock permafrost. We studied the effects of both, past and projected future ground surface temperature variations on the basis of numerical experimentation with simplified mountain topography in order to demonstrate the principal effects. The modeling approach applied combines a distributed surface energy balance model and a three-dimensional subsurface heat conduction scheme. Results show that the past climate variations that essentially influence present-day permafrost temperatures at depth of the idealized mountains are the last glacial period and the major fluctuations in the past millennium. Transient effects from projected future warming, however, are likely larger than those from past climate conditions because larger temperature changes at the surface occur in shorter time periods. We further demonstrate the accelerating influence of multi-lateral warming in steep and complex topography for a temperature signal entering the subsurface as compared to the situation in flat areas. The effects of varying and uncertain material properties (i.e., thermal properties, porosity, and freezing characteristics) on the subsurface temperature field were examined in sensitivity studies. A considerable influence of latent heat due to water in low-porosity bedrock was only shown for simulations over time periods of decades to centuries. At the end, the model was applied to the topographic setting of the Matterhorn (Switzerland). Results from idealized geometries are compared to this first example of real topography, and possibilities as well as limitations of the model application are discussed.


EDIS ◽  
1969 ◽  
Vol 2004 (17) ◽  
Author(s):  
Norman Breuer ◽  
Matthew Langholtz ◽  
David Zierden ◽  
Clyde Fraisse

Atmospheric scientists are now able to predict seasonal climate variations, with a relatively high level of skill. Knowledge of climatic conditions allows us to develop a seasonal management strategy for forest plantations and managed natural forests. Areas of application include seedling establishment, preparing for pests and diseases, fire management, harvest schedules and inventory management. This publication provides strategies to consider for pine plantation establishment in Florida and southern Alabama and Georgia. Seasonal climate conditions can be better predicted for this region because it is affected by the El Niño Southern Oscillation (ENSO) phenomenon. This document is ABE354, one of a series of the Agricultural and Biological Department, Florida Cooperative Extension Service, Institute of Food and Sciences, University of Florida. Published November 2004. https://edis.ifas.ufl.edu/ae282


The Holocene ◽  
2019 ◽  
Vol 30 (2) ◽  
pp. 315-331
Author(s):  
Swati Tripathi ◽  
Biswajeet Thakur ◽  
Chandra Mohan Nautiyal ◽  
Samir Kumar Bera

The present study deals with pollen analyses from two sedimentary sequences (280 and 150 cm deep) cored from wetlands in Deepor (Kamrup district) and Hasila (Goalpara district) in the western Brahmaputra flood plain of Assam. This region is a part of the Indo-Burma region and documents changes in vegetation, climate and alterations in the wetland level as well as of anthropogenic impacts as related to the fluctuating orientation of the southwest monsoon during the past 13,040 cal. yr. The presence of cool taxa, both trees and ferns, Schima, Ilex, Gleichenia dichotoma and Pteris pentaphylla, though present in small amounts, indicate cool and dry climatic conditions from 13,040 to 11,700 cal. BP. This is followed by a shift to warmer and moderately humid climate between about 8390–3450 cal. BP which coincides with the Holocene thermal maximum (8000–7000 yr BP) and could be attributed to an intensified southwest monsoon. A palynozone depicting less warm and humid climate was observed between 3450 and 2250 cal. BP because of the occurrence of low frequencies of Shorea and Terminalia along with marshy taxa. Climatic conditions were again improved from 2250 cal. BP onwards under warm and moderately humid climate owing to the proliferation of Sal and its associates and thereafter, between 1500 and 710 cal. BP, an increased humid climate is indicated by relatively high percentages of Shorea, Syzygium, Impatiens, Onagraceae and Myriophyllum indicating strong monsoonal conditions corresponding to Medieval Warm Period (MWP). Deterioration of the tropical mixed deciduous forest under a warm and relatively dry climatic regime has occurred since 710 cal. BP accompanied by accelerated human settlement, as shown by an abrupt increase in Poaceae > 45 µm along with typical ruderal pollen taxa.


2022 ◽  
Vol 10 (1) ◽  
pp. 23-42
Author(s):  
Yan Zhong ◽  
Qiao Liu ◽  
Matthew Westoby ◽  
Yong Nie ◽  
Francesca Pellicciotti ◽  
...  

Abstract. Topographic development via paraglacial slope failure (PSF) represents a complex interplay between geological structure, climate, and glacial denudation. Southeastern Tibet has experienced amongst the highest rates of ice mass loss in High Mountain Asia in recent decades, but few studies have focused on the implications of this mass loss on the stability of paraglacial slopes. We used repeat satellite- and unpiloted aerial vehicle (UAV)-derived imagery between 1990 and 2020 as the basis for mapping PSFs from slopes adjacent to Hailuogou Glacier (HLG), a 5 km long monsoon temperate valley glacier in the Mt. Gongga region. We observed recent lowering of the glacier tongue surface at rates of up to 0.88 m a−1 in the period 2000 to 2016, whilst overall paraglacial bare ground area (PBGA) on glacier-adjacent slopes increased from 0.31 ± 0.27 km2 in 1990 to 1.38 ± 0.06 km2 in 2020. Decadal PBGA expansion rates were ∼ 0.01 km2 a−1, 0.02 km2 a−1, and 0.08 km2 in the periods 1990–2000, 2000–2011, and 2011–2020 respectively, indicating an increasing rate of expansion of PBGA. Three types of PSFs, including rockfalls, sediment-mantled slope slides, and headward gully erosion, were mapped, with a total area of 0.75 ± 0.03 km2 in 2020. South-facing valley slopes (true left of the glacier) exhibited more destabilization (56 % of the total PSF area) than north-facing (true right) valley slopes (44 % of the total PSF area). Deformation of sediment-mantled moraine slopes (mean 1.65–2.63 ± 0.04 cm d−1) and an increase in erosion activity in ice-marginal tributary valleys caused by a drop in local base level (gully headward erosion rates are 0.76–3.39 cm d−1) have occurred in tandem with recent glacier downwasting. We also observe deformation of glacier ice, possibly driven by destabilization of lateral moraine, as has been reported in other deglaciating mountain glacier catchments. The formation, evolution, and future trajectory of PSFs at HLG (as well as other monsoon-dominated deglaciating mountain areas) are related to glacial history, including recent rapid downwasting leading to the exposure of steep, unstable bedrock and moraine slopes, and climatic conditions that promote slope instability, such as very high seasonal precipitation and seasonal temperature fluctuations that are conducive to freeze–thaw and ice segregation processes.


2019 ◽  
Vol 3 (1) ◽  
pp. 1-14
Author(s):  
Philip Brick ◽  
Kent Woodruff

This case explores the Methow Beaver Project (MBP), an ambitious experiment to restore beaver (Castor canadensis) to a high mountain watershed in Washington State, USA. The Pacific Northwest is already experiencing weather regimes consistent with longer term climate projections, which predict longer and drier summers and stronger and wetter winter storms. Ironically, this combination makes imperative more water storage in one of the most heavily dammed regions in the nation. Although the positive role that beaver can play in watershed enhancement has been well known for decades, no project has previously attempted to re-introduce beaver on a watershed scale with a rigorous monitoring protocol designed to document improved water storage and temperature conditions needed for human uses and aquatic species. While the MBP has demonstrated that beaver can be re-introduced on a watershed scale, it has been much more difficult to scientifically demonstrate positive changes in water retention and stream temperature, given hydrologic complexity, unprecedented fire and floods, and the fact that beaver are highly mobile. This case study can help environmental studies students and natural resource policy professionals think about the broader challenges of diffuse, ecosystem services approaches to climate adaptation. Beaver-produced watershed improvements will remain difficult to quantify and verify, and thus will likely remain less attractive to water planners than conventional storage dams. But as climate conditions put additional pressure on such infrastructure, it is worth considering how beaver might be employed to augment watershed storage capacity, even if this capacity is likely to remain at least in part inscrutable.


2017 ◽  
Vol 4 (3) ◽  
pp. 62-72
Author(s):  
O. Zhukorsky ◽  
O. Nykyforuk ◽  
N. Boltyk

Aim. Proper development of animal breeding in the conditions of current global problems and the decrease of anthropogenic burden on environment due to greenhouse gas emissions, caused by animal breeding activity, require the study of interaction processes between animal breeding and external climatic conditions. Methods. The theoretical substantiation of the problem was performed based on scientifi c literature, statistical informa- tion of the UN Food and Agriculture Organization and the data of the National greenhouse gas emissions inventory in Ukraine. Theoretically possible emissions of greenhouse gases into atmosphere due to animal breeding in Ukraine and specifi c farms are calculated by the international methods using the statistical infor- mation about animal breeding in Ukraine and the economic-technological information of the activity of the investigated farms. Results. The interaction between the animal breeding production and weather-and-climate conditions of environment was analyzed. Possible vectors of activity for the industry, which promote global warming and negative processes, related to it, were determined. The main factors, affecting the formation of greenhouse gases from the activity of enterprises, aimed at animal breeding production, were characterized. Literature data, statistical data and calculations were used to analyze the role of animal breeding in the green- house gas emissions in global and national framework as well as at the level of specifi c farms with the consid- eration of individual specifi cities of these farms. Conclusions. Current global problems require clear balance between constant development of sustainable animal breeding and the decrease of the carbon footprint due to the activity of animal breeding.


Agriculture ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 290
Author(s):  
Koffi Djaman ◽  
Curtis Owen ◽  
Margaret M. West ◽  
Samuel Allen ◽  
Komlan Koudahe ◽  
...  

The highly variable weather under changing climate conditions affects the establishment and the cutoff of crop growing season and exposes crops to failure if producers choose non-adapted relative maturity that matches the characteristics of the crop growing season. This study aimed to determine the relationship between maize hybrid relative maturity and the grain yield and determine the relative maturity range that will sustain maize production in northwest New Mexico (NM). Different relative maturity maize hybrids were grown at the Agricultural Science Center at Farmington ((Latitude 36.69° North, Longitude 108.31° West, elevation 1720 m) from 2003 to 2019 under sprinkler irrigation. A total of 343 hybrids were grouped as early and full season hybrids according to their relative maturity that ranged from 93 to 119 and 64 hybrids with unknown relative maturity. The crops were grown under optimal management condition with no stress of any kind. The results showed non-significant increase in grain yield in early season hybrids and non-significant decrease in grain yield with relative maturity in full season hybrids. The relative maturity range of 100–110 obtained reasonable high grain yields and could be considered under the northwestern New Mexico climatic conditions. However, more research should target the evaluation of different planting date coupled with plant population density to determine the planting window for the early season and full season hybrids for the production optimization and sustainability.


IAWA Journal ◽  
2008 ◽  
Vol 29 (2) ◽  
pp. 189-207 ◽  
Author(s):  
Claudio S. Lisi ◽  
Mário Tomazello Fo ◽  
Paulo C. Botosso ◽  
Fidel A. Roig ◽  
Vivian R.B. Maria ◽  
...  

Many tropical tree species produce growth rings in response to seasonal environmental factors that influence the activity of the vascular cambium. We applied the following methods to analyze the annual nature of treering formation of 24 tree species from a seasonal semi-deciduous forest of southeast Brazil: describing wood anatomy and phenology, counting tree rings after cambium markings, and using permanent dendrometer bands. After 7 years of systematic observations and measurements, we found the following: the trees lost their leaves during the dry season and grew new leaves at the end of the same season; trunk increment dynamics corresponded to seasonal changes in precipitation, with higher increment (active period) during the rainy season (October–April) and lower increment (dormant period) during the dry season (May–September); the number of tree rings formed after injuries to the cambium coincided with the number of years since the extraction of the wood samples. As a result of these observations, it was concluded that most study trees formed one growth ring per year. This suggests that tree species from the seasonal semi-deciduous forests of Brazil have an annual cycle of wood formation. Therefore, these trees have potential for use in future studies of tree age and radial growth rates, as well as to infer ecological and regional climatic conditions. These future studies can provide important information for the management and conservation of these endangered forests.


2016 ◽  
Vol 12 (2) ◽  
pp. 117-124
Author(s):  
Judit Sárándi-Kovács ◽  
László Nagy ◽  
Ferenc Lakatos ◽  
György Sipos

Abstract During a regular survey of declining forests in 2011, sudden dieback symptoms were observed on scattered wild cherry trees (Prunus avium) in a mixed deciduous forest stand, located in the flood plain area of the Rába River, in northwest Hungary. In this study, we correlated both soil conditions and presence of Phytophthora spp. to dieback of cherry trees. Two Phytophthora species, P. polonica and P. plurivora, were isolated from the rhizosphere soil of the dying trees. By contrast, only P. polonica was recovered from the necrotic tissues of symptomatic roots. Stem and root inoculation tests on cherry seedlings showed pathogenicity of both species, although P. polonica proved to be more virulent. This is the first report of natural infections of P. polonica.


Sign in / Sign up

Export Citation Format

Share Document