scholarly journals In vitro evaluation of chitosan-DNA plasmid complex encoding Jembrana disease virus Env-TM protein as a vaccine candidate

2019 ◽  
Vol 63 (1) ◽  
pp. 7-16 ◽  
Author(s):  
Januar Ishak ◽  
Lalu Unsunnidhal ◽  
Ronny Martien ◽  
Asmarani Kusumawati

AbstractIntroduction:The development of Jembrana disease vaccine is an important effort to prevent losses in the Bali cattle industry in Indonesia. This study aims to prepare a Jembrana DNA vaccine encoding the transmembrane portion of the envelope protein in pEGFP-C1 and test the success of its delivery in culture cells using a chitosan-DNA complex.Material and Methods:Cloning of the DNA vaccine was successfully performed onE. coliDH5α and confirmed by colony PCR, restriction analysis and sequencing. The plasmids were prepared as a chitosan complex using the complex coacervation method and physicochemically characterised using a particle size analyser. A transfection assay was performed in HeLa cells with 4 h exposure, and mRNA expression was assessed at 24 h post transfection.Results:With a 1:2 (wt./wt.) ratio of DNA and chitosan, the complexes have a mean diameter of 236 nm, zeta potential value of + 17.9 mV, and showed no high toxicity potential in the HeLa cells. This complex successfully delivered the DNA into cells, as shown by the presence of a specific RT-PCR product (336 bp). However, the real-time PCR analysis showed that the delivery with chitosan complex resulted in lower target mRNA expression when compared with a commercial transfecting agent.Conclusion:pEGFP-env-tm JDV as a candidate vaccine can be delivered as the chitosan-DNA complex and be expressed at the transcription levelin vitro. This initial study will be used for further improvement and evaluationin vivo.

2020 ◽  
Vol 18 ◽  
Author(s):  
Zirui Zhang ◽  
Shangcong Han ◽  
Panpan Liu ◽  
Xu Yang ◽  
Jing Han ◽  
...  

Background: Chronic inflammation and lack of angiogenesis are the important pathological mechanisms in deep tissue injury (DTI). Curcumin is a well-known anti-inflammatory and antioxidant agent. However, curcumin is unstable under acidic and alkaline conditions, and can be rapidly metabolized and excreted in the bile, which shortens its bioactivity and efficacy. Objective: This study aimed to prepare curcumin-loaded poly (lactic-co-glycolic acid) nanoparticles (CPNPs) and to elucidate the protective effects and underlying mechanisms of wound healing in DTI models. Methods: CPNPs were evaluated for particle size, biocompatibility, in vitro drug release and their effect on in vivo wound healing. Results : The results of in vivo wound closure analysis revealed that CPNP treatments significantly improved wound contraction rates (p<0.01) at a faster rate than other three treatment groups. H&E staining revealed that CPNP treatments resulted in complete epithelialization and thick granulation tissue formation, whereas control groups resulted in a lack of compact epithelialization and persistence of inflammatory cells within the wound sites. Quantitative real-time PCR analysis showed that treatment with CPNPs suppressed IL-6 and TNF-α mRNA expression, and up-regulated TGF-β, VEGF-A and IL-10 mRNA expression. Western blot analysis showed up-regulated protein expression of TGF-β, VEGF-A and phosphorylatedSTAT3. Conclusion: Our results showed that CPNPs enhanced wound healing in DTI models, through modulation of the JAK2/STAT3 signalling pathway and subsequent upregulation of pro-healing factors.


2016 ◽  
Vol 229 (3) ◽  
pp. 331-341 ◽  
Author(s):  
Xiang Zhou ◽  
Ying Wang ◽  
Luisina Ongaro ◽  
Ulrich Boehm ◽  
Vesa Kaartinen ◽  
...  

Pituitary follicle-stimulating hormone (FSH) synthesis is regulated by transforming growth factorβsuperfamily ligands, most notably the activins and inhibins. Bone morphogenetic proteins (BMPs) also regulate FSHβ subunit (Fshb) expression in immortalized murine gonadotrope-like LβT2 cells and in primary murine or ovine primary pituitary cultures. BMP2 signals preferentially via the BMP type I receptor, BMPR1A, to stimulate murine Fshb transcription in vitro. Here, we used a Cre–lox approach to assess BMPR1A’s role in FSH synthesis in mice in vivo. Gonadotrope-specific Bmpr1a knockout animals developed normally and had reproductive organ weights comparable with those of controls. Knockouts were fertile, with normal serum gonadotropins and pituitary gonadotropin subunit mRNA expression. Cre-mediated recombination of the floxed Bmpr1a allele was efficient and specific, as indicated by PCR analysis of diverse tissues and isolated gonadotrope cells. Furthermore, BMP2 stimulation of inhibitor of DNA binding 3 expression was impaired in gonadotropes isolated from Bmpr1a knockout mice, confirming the loss of functional receptor protein in these cells. Treatment of purified gonadotropes with small-molecule inhibitors of BMPR1A (and the related receptors BMPR1B and ACVR1) suppressed Fshb mRNA expression, suggesting that an autocrine BMP-like molecule might regulate FSH synthesis. However, deletion of Bmpr1a and Acvr1 in cultured pituitary cells did not alter Fshb expression, indicating that the inhibitors had off-target effects. In sum, BMPs or related ligands acting via BMPR1A or ACVR1 are unlikely to play direct physiological roles in FSH synthesis by murine gonadotrope cells.


2004 ◽  
Vol 16 (2) ◽  
pp. 237
Author(s):  
C.E. Farin ◽  
J.E. Alexander ◽  
K.F. Rodriguez ◽  
P.W. Farin

The objective of this study was to determine the effect of in vitro embryo production (IVP) on expression of mRNAs for IGF-1, IGF-2, IGF-1 receptor (IGF-1R), IGF-2R and GAPDH in bovine conceptuses at Day 17 of gestation. In vivo embryos (In vivo) were recovered from superovulated Holstein cows. For IVP, Holstein oocytes were matured, fertilized and then cultured in M199 with 10% serum (IVPS) or 1% BSA (IVPSR) to 72hpi. All embryos were then transferred to M199 with 10% serum and cultured to 168hpi. The same Holstein sire was used to produce all embryos. Single grade 1 blastocysts were transferred into recipient heifers. On day 10 after transfer, conceptuses were recovered, measured and stored at −80°C prior to extraction of whole cell (wc) RNA and genomic (g) DNA. wcRNA was assessed for quality based on A260/A280 ratio and visualization of 18S and 28S ribosomal RNA. Only complete (intact) conceptuses with at least 10μg high-quality wcRNA recovered after extraction were included in the analysis (In vivo, n=8; IVPS n=8; IVPSR n=7). Conceptus sex was determined by PCR analysis of gDNA. Semi-quantitative PCR assays were used to assess relative expression of all mRNAs. For each conceptus, 2μg wcRNA were mixed with 3pg rabbit globin mRNA, DNase-treated and reverse-transcribed using random hexamers. Conceptus cDNA samples (140ng each for IGF-1, IGF-2 mRNAs;; 100ng each for IGF-1R, IGF-2R, GAPDH and globin mRNAs) were assayed in duplicate within single assays. Relative mRNA expression was calculated as the ratio of band intensities representing the mRNA of interest to globin mRNA. All data were analyzed for effects of treatment (In vivo, IVPS, IVPSR or In vivo, IVP), sex, stage of blastocyst development at transfer (early, mid, expanded) and the interactions of treatment sex and treatment stage. Conceptus length (LSM±SEMmm) did not differ with treatment (In vivo: 182±55; IVPS: 257±47; IVPSR: 310±72). Expression of GAPDH mRNA was greater (P=0.02) in female conceptuses (1.31±0.11) than in males (0.96±0.07) and did not differ (P=0.14) between treatment groups (In vivo: 1.30±0.11, IVPS: 1.00±0.09, IVPSR: 1.10±0.14). However, when the IVP groups were combined and compared to In vivo controls, expression of GAPDH mRNA was both greater (P=0.002) in females (1.38±0.10) than in males (0.94±0.06) and differed (P=0.03) with treatment (In vivo: 1.30±0.10, IVP: 1.01±0.07). Expression of IGF-1 and IGF-2 mRNA was not detected in the majority of conceptuses. Expression of IGF-1R mRNA was greater (P=0.02) in female (1.19±0.10) than in male conceptuses (0.87±0.07) and differed (P=0.02) with stage of blastocyst development at transfer (early: 0.79±0.07; mid: 1.23±0.13; expanded: 1.07±0.11). There was no effect of treatment on expression of IGF-1R mRNA. Expression of IGF-2R mRNA differed (P=0.03) with treatment (In vivo: 0.85±0.10; IVPS: 0.76±0.09; IVPSR: 0.33±0.13). In conclusion, expression of both imprinted and non-imprinted genes is altered in conceptuses resulting from embryos produced in vitro. Supported by the North Carolina Agricultural Research Service.


Cells ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 106
Author(s):  
Yeongji Yu ◽  
Hyejin Kim ◽  
SeokGyeong Choi ◽  
JinSuh Yu ◽  
Joo Yeon Lee ◽  
...  

The elimination of the cancer stem cell (CSC) population may be required to achieve better outcomes of cancer therapy. We evaluated stearoyl-CoA desaturase 1 (SCD1) as a novel target for CSC-selective elimination in colon cancer. CSCs expressed more SCD1 than bulk cultured cells (BCCs), and blocking SCD1 expression or function revealed an essential role for SCD1 in the survival of CSCs, but not BCCs. The CSC potential selectively decreased after treatment with the SCD1 inhibitor in vitro and in vivo. The CSC-selective suppression was mediated through the induction of apoptosis. The mechanism leading to selective CSC death was investigated by performing a quantitative RT-PCR analysis of 14 CSC-specific signaling and marker genes after 24 and 48 h of treatment with two concentrations of an inhibitor. The decrease in the expression of Notch1 and AXIN2 preceded changes in the expression of all other genes, at 24 h of treatment in a dose-dependent manner, followed by the downregulation of most Wnt- and NOTCH-signaling genes. Collectively, we showed that not only Wnt but also NOTCH signaling is a primary target of suppression by SCD1 inhibition in CSCs, suggesting the possibility of targeting SCD1 against colon cancer in clinical settings.


2018 ◽  
Vol 60 (No. 8) ◽  
pp. 359-366
Author(s):  
J. Li ◽  
B. Shi ◽  
S. Yan ◽  
L. Jin ◽  
Y. Guo ◽  
...  

The effects of chitosan on nitric oxide (NO) production and inducible nitric oxide synthase (iNOS) activity and gene expression in vivo or vitro were investigated in weaned piglets. In vivo, 180 weaned piglets were assigned to five dietary treatments with six replicates. The piglets were fed on a basal diet supplemented with 0 (control), 100, 500, 1000, and 2000 mg chitosan/kg feed, respectively. In vitro, the peripheral blood mononuclear cells (PBMCs) from a weaned piglet were cultured respectively with 0 (control), 40, 80, 160, and 320 &micro;g chitosan/ml medium. Results showed that serum NO concentrations on days 14 and 28 and iNOS activity on day 28 were quadratically improved with increasing chitosan dose (P &lt; 0.05). The iNOS mRNA expressions were linearly or quadratically enhanced in the duodenum on day 28, and were improved quadratically in the jejunum on days 14 and 28 and in the ileum on day 28 (P &lt; 0.01). In vitro, the NO concentrations, iNOS activity, and mRNA expression in unstimulated PBMCs were quadratically enhanced by chitosan, but the improvement of NO concentrations and iNOS activity by chitosan were markedly inhibited by N-(3-[aminomethyl] benzyl) acetamidine (1400w) (P&nbsp;&lt; 0.05). Moreover, the increase of NO concentrations, iNOS activity, and mRNA expression in PBMCs induced by lipopolysaccharide (LPS) were suppressed significantly by chitosan (P &lt; 0.05). The results indicated that the NO concentrations, iNOS activity, and mRNA expression in piglets were increased by feeding chitosan in a dose-dependent manner. In addition, chitosan improved the NO production in unstimulated PBMCs but inhibited its production in LPS-induced cells, which exerted bidirectional regulatory effects on the NO production via modulated iNOS activity and mRNA expression.


2004 ◽  
Vol 80 (3) ◽  
pp. 143-151 ◽  
Author(s):  
Ryusei Matsumura ◽  
Sakae Takeuchi ◽  
Sumio Takahashi

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Hai-Jun Gao ◽  
Xu-Dong Sun ◽  
Yan-Ping Luo ◽  
Hua-Sheng Pang ◽  
Xing-Ming Ma ◽  
...  

Abstract Background Echinococcosis, which is caused by the larvae of cestodes of the genus Echinococcus, is a parasitic zoonosis that poses a serious threat to the health of humans and animals globally. Albendazole is the drug of choice for the treatment of echinococcosis, but it is difficult to meet clinical goals with this chemotherapy due to its low cure rate and associated side effects after its long-term use. Hence, novel anti-parasitic targets and effective treatment alternatives are urgently needed. A previous study showed that verapamil (Vepm) can suppress the growth of Echinococcus granulosus larvae; however, the mechanism of this effect remains unclear. The aim of the present study was to gain insight into the anti-echinococcal effect of Vepm on Echinococcus with a particular focus on the regulatory effect of Vepm on calcium/calmodulin-dependent protein kinase II (Ca2+/CaM-CaMKII) in infected mice. Methods The anti-echinococcal effects of Vepm on Echinococcus granulosus protoscoleces (PSC) in vitro and Echinococcus multilocularis metacestodes in infected mice were assessed. The morphological alterations in Echinococcus spp. induced by Vepm were observed by scanning electron microscopy (SEM), and the changes in calcium content in both the parasite and mouse serum and liver were measured by SEM-energy dispersive spectrometry, inductively coupled plasma mass spectrometry and alizarin red staining. Additionally, the changes in the protein and mRNA levels of CaM and CaMKII in infected mice, and in the mRNA levels of CaMKII in E. granulosus PSC, were evaluated after treatment with Vepm by immunohistochemistry and/or real-time quantitative polymerase chain reaction. Results In vitro, E. granulosus PSC could be killed by Vepm at a concentration of 0.5 μg/ml or higher within 8 days. Under these conditions, the ultrastructure of PSC was damaged, and this damage was accompanied by obvious calcium loss and downregulation of CaMKII mRNA expression. In vivo, the weight and the calcium content of E. multilocularis metacestodes from mice were reduced after treatment with 40 mg/kg Vepm, and an elevation of the calcium content in the sera and livers of infected mice was observed. In addition, downregulation of CaM and CaMKII protein and mRNA expression in the livers of mice infected with E. multilocularis metacestodes was found after treatment with Vepm. Conclusions Vepm exerted a parasiticidal effect against Echinococcus both in vitro and in vivo through downregulating the expression of Ca2+/CaM-CaMKII, which was over-activated by parasitic infection. The results suggest that Ca2+/CaM-CaMKII may be a novel drug target, and that Vepm is a potential anti-echinococcal drug for the future control of echinococcosis.


2012 ◽  
Vol 303 (10) ◽  
pp. L852-L860 ◽  
Author(s):  
S. Yoshida ◽  
N. Minematsu ◽  
S. Chubachi ◽  
H. Nakamura ◽  
M. Miyazaki ◽  
...  

Efferocytosis is believed to be a key regulator for lung inflammation in chronic obstructive pulmonary disease. In this study we pharmacologically inhibited efferocytosis with annexin V and attempted to determine its impact on the progression of pulmonary emphysema in mouse. We first demonstrated in vitro and in vivo efferocytosis experiments using annexin V, an inhibitor for phosphatidylserine-mediated efferocytosis. We then inhibited efferocytosis in porcine pancreatic elastase (PPE)-treated mice. PPE-treated mice were instilled annexin V intranasally starting from day 8 until day 20. Mean linear intercept (Lm) was measured, and cell apoptosis was assessed in lung specimen obtained on day 21. Cell profile, apoptosis, and mRNA expression of matrix metalloproteinases (MMPs) and growth factors were evaluated in bronchoalveolar lavage (BAL) cells on day 15. Annexin V attenuated macrophage efferocytosis both in vitro and in vivo. PPE-treated mice had a significant higher Lm, and annexin V further increased that by 32%. More number of macrophages was found in BAL fluid in this group. Interestingly, cell apoptosis was not increased by annexin V treatment both in lung specimens and BAL fluid, but macrophages from mice treated with both PPE and annexin V expressed higher MMP-2 mRNA levels and had a trend for higher MMP-12 mRNA expression. mRNA expression of keratinocyte growth factor tended to be downregulated. We showed that inhibited efferocytosis with annexin V worsened elastase-induced pulmonary emphysema in mice, which was, at least partly, attributed to a lack of phenotypic change in macrophages toward anti-inflammatory one.


2001 ◽  
Vol 114 (24) ◽  
pp. 4575-4585 ◽  
Author(s):  
Tokuko Haraguchi ◽  
Takako Koujin ◽  
Miriam Segura-Totten ◽  
Kenneth K. Lee ◽  
Yosuke Matsuoka ◽  
...  

Mutations in emerin cause the X-linked recessive form of Emery-Dreifuss muscular dystrophy (EDMD). Emerin localizes at the inner membrane of the nuclear envelope (NE) during interphase, and diffuses into the ER when the NE disassembles during mitosis. We analyzed the recruitment of wildtype and mutant GFP-tagged emerin proteins during nuclear envelope assembly in living HeLa cells. During telophase, emerin accumulates briefly at the ‘core’ region of telophase chromosomes, and later distributes over the entire nuclear rim. Barrier-to-autointegration factor (BAF), a protein that binds nonspecifically to double-stranded DNA in vitro, co-localized with emerin at the ‘core’ region of chromosomes during telophase. An emerin mutant defective for binding to BAF in vitro failed to localize at the ‘core’ in vivo, and subsequently failed to localize at the reformed NE. In HeLa cells that expressed BAF mutant G25E, which did not show ‘core’ localization, the endogenous emerin proteins failed to localize at the ‘core’ region during telophase, and did not assemble into the NE during the subsequent interphase. BAF mutant G25E also dominantly dislocalized LAP2β and lamin A from the NE, but had no effect on the localization of lamin B. We conclude that BAF is required for the assembly of emerin and A-type lamins at the reforming NE during telophase, and may mediate their stability in the subsequent interphase.


2004 ◽  
Vol 286 (6) ◽  
pp. L1179-L1187 ◽  
Author(s):  
Kirk A. Gilbert ◽  
Stephen R. Rannels

The regulation of matrix γ-carboxyglutamic acid protein (MGP) expression during the process of lung branching morphogenesis and development was investigated. MGP mRNA expression was determined over an embryonic and postnatal time course and shown to be developmentally regulated. Immunohistochemical analysis revealed increased staining for MGP in peripheral mesenchyme surrounding distal epithelial tubules. Fetal lung explants were used as an in vitro growth model to examine expression and regulation of MGP during branching morphogenesis. MGP mRNA expression over the culture interval mimicked the in vivo time course. Explants cultured in the presence of antibodies against MGP showed gross dilation and reduced terminal lung bud counts, accompanied by changes in MGP, sonic hedgehog, and patched mRNA expression. Similarly, antifibronectin antibody treatment resulted in explant dilation and reduced MGP expression, providing evidence for an interaction with MGP and fibronectin. Conversely, intraluminal microinjection of anti-MGP antibodies had no effect either on explant growth or MGP expression, supporting the hypothesis that MGP exerts its effects through the mesenchyme. Taken together, the results suggest that MGP plays a role in lung growth and development, likely via temporally and spatially specific interactions with other branching morphogenesis-related proteins to influence growth processes.


Sign in / Sign up

Export Citation Format

Share Document