scholarly journals Diver Poisoning with Contaminated Compresses Air

2020 ◽  
Vol 71 (2) ◽  
pp. 51-54
Author(s):  
Romuald Olszański ◽  
Elżbieta Mamet-Ossowska

Abstract The paper describes the case of a military diver who suffered from a complicated poisoning caused by hydrocarbons contained in his breathing air. The hydrocarbons came from a malfunctioning compressor which was used to fill the diving cylinders; the compressor sucked in the exhaust gases of its own motor. Exhaust gas poisoning was further complicated by hypoxia and hypercapnia as the diver spat out the mouthpiece and started to breathe from inside the suit. This resulted in a loss of consciousness. The diver was extracted to the surface and was given oxygen to breathe. The course of treatment was successful. On the same day, symptoms of exhaust gas poisoning occurred in several divers using cylinders filled with the same compressor.

Crisis ◽  
2005 ◽  
Vol 26 (1) ◽  
pp. 25-33 ◽  
Author(s):  
Elizabeth King ◽  
Neil Frost

Abstract. A retrospective suicide study revealed that the Forestry Commission car parks in the New Forest in southern England were a previously unrecognized magnet for nonlocal suicides, attracting as high a proportion of “visitors” (35/43 in 1993-97) as among suicides who jumped from the cliffs at the infamous Beachy Head (39/48 in 1993-97). Over 95% of the car park suicides died from car exhaust gas poisoning. A multiagency initiative aimed to reduce the number of suicides in the 140 New Forest car parks where restricting access was impossible, and environmental issues paramount. Signs displaying the Samaritans' national telephone number were erected in the 26 car parks in which 50% of the car park suicides had occurred. Numbers, location, and residence of all car park deaths were monitored for 3 years. Corresponding changes in other forest registration districts were also monitored. During the 3-year intervention period the number of car park suicides fell significantly from 10/year, 1988-1997, to 3.3/year. The average annual total number of suicides in the New Forest registration district also decreased. No significant changes were found in comparable forest districts. The number of suicides in the New Forest car parks remained low during the 2 years following the evaluation.


Author(s):  
S. Mohammad Javadi ◽  
Pourya Nikoueeyan ◽  
Mohammad Moghiman ◽  
M. Ebrahim Feyz

The enhancement of the flame radiation in gas fueled burners not only improves the thermal efficiency, but also can suppress the rate of NO emission due to reducing the flame temperature. In this experimental investigation, the effect of inlet gas temperature on the flame radiation intensity and the rate of NO formation are studied. To serve this aim, with increasing the temperature of inlet methane to the burner up to 310°C, the variations of CO and NO level in exhaust gases and also the exhaust gas temperature are recorded by gas analyzer device. In each case, the flame radiation intensity was also measured by a photovoltaic module. The results revealed that by increasing the inlet gas temperature up to 250°C, the NO concentration and the exhaust gases temperature are raising. But when the inlet gas temperature exceeds from 250°C and reaches to 310°C, the flame luminosity gradually increases which results in 70 percent growth in flame radiation and 10 percent drop in exhaust gas temperature. The results of the preheating of inlet air also show the same behavior.


2019 ◽  
Vol 179 (4) ◽  
pp. 204-209
Author(s):  
Winicjusz STANIK ◽  
Jerzy CISEK

To avoid the negative effects of increasing the amount of RME in the diesel fuel (to 10%), three different additive packages were used: stabilising, cleaning, and increasing the cetane number with different concentrations. The tests were carried out using a 4-cylinder, turbocharged 1.9 TDI engine from VW. The tests were carried out for 4 fuels (comparative fuel with a content of 7% RME and 3 test fuels with a content of 10% RME, differing in the content of the additive package.It was found that each of the 3 additive packages used does not have a significant impact on fuel consumption. However, a different effect of the tested additives on the composition of exhaust gases was observed. The first package had a slight effect on reducing the NOx concentration in the exhaust, but only for small engine loads. On the other hand, the second additive pack worked more effectively only at higher engine loads (in relation to the reduction of NOx concentration in the exhaust gases). In the third packet, the amount of the cetane additive was doubled (compared to the second packet). Then, the reduction in the NOx concentration in the exhaust gas by 3–8% was obtained with reference to the comparative fuel.


2019 ◽  
pp. 20-24
Author(s):  
Максим Андрійович Пирисунько ◽  
Роман Миколайович Радченко ◽  
Андрій Адольфович Андреєв ◽  
Вікторія Сергіївна Корнієнко

The problem of air basin pollution of the World Ocean with harmful emissions from the exhaust gases of marine diesel engines is primarily associated with the creation of highly efficient technologies for the neutralization of nitrogen oxides NOx on exhaust gases from a diesel engine. Emissions of harmful substances from the combustion of marine fuels are limited by international atmospheric protection programs and the requirements of the International Maritime Organization (IMO). The requirements relate to almost all groups of harmful emissions in marine engines and the more stringent of them are primarily related to nitrogen oxides NOx and sulfur oxides SOx. To reduce harmful emissions from exhaust gases into the environment, scientists and world engine leaders use and suggest various methods for reducing the content of harmful substances in exhaust gases. The implementation of new standards in the areas of further improvement of the working process, the use of alternative fuels, fuel, and air additives, as well as selective catalytic reduction systems do not preclude further development of scientific research in the field of exhaust gas cleaning. One of the promising ways in environmentalizing marine internal combustion engines is the neutralization of harmful substances in exhaust gases through particular gas recirculation (EGR-technology). However, the use of such techniques conflicts with the engine's energy efficiency. In the work presented, the scheme-design solution of the exhaust gas recirculation system with using the heat of recirculation gases by an ejector refrigeration machine for cooling the air at the intake of ship's main engine is proposed. The effect of using the heat of recirculation gases for cooling the air at the intake of the engine is analyzed taking into account the changing climatic conditions for a particular vessel's route line. It is shown that the use of an ejector refrigeration machine reduces the air temperature at the entrance of the main engine by 5…15 ° С, which reduces the specific fuel consumption. This reduces emissions of harmful substances when the engine is running with recirculation of gases.


JURNAL TEKNIK ◽  
2018 ◽  
Vol 12 (2) ◽  
pp. 85-96
Author(s):  
Elham Prasetyo Wibowo ◽  
Elvira Zondra ◽  
Usaha Situmeang

                                                                                                                                      ABSTRAK              Exhaust fan adalah peralatan berupa sudu-sudu yang berputar dan memanfaatkan gaya sentrifugal untuk membuang exhaust gas hasil pembakaran bahan bakar solar engine diesel pada saat dilakukan tes pembebanan penuh. Dengan exhaust fan, gas karbondioksida yang dihasilkan oleh engine diesel memungkinkan untuk dibuang dengan cepat sehingga tidak memenuhi ruangan dan membahayakan bagi setiap karyawan. Pengoperasian exhaust fan dilakukan sesuai jadwal pengetesan engine. Exhaust fan tersebut digerakkan oleh motor induksi 3 phasa 30 kW dengan putaran nominal secara konstan. Pada saat pengetesan engine dengan nilai aliran gas buang yang rendah, exhaust fan tetap dioperasikan dengan kecepatan nominal. Operasional motor exhaust fan dengan kecepatan konstan seperti ini akan mengakibatkan konsumsi daya listrik yang relatif tinggi dari pada motor dengan kecepatan berubah-ubah sesuai kebutuhan. Sebagai pertimbangan hasil perhitungan untuk engine C 18 Caterpillar kapasitas 831 hp yang sebelumya  membutuhkan operasional exhaust fan dengan daya 24,7927 kW nilai sama untuk semua model engine, setelah penggunaan VSD dapat dikurangi sebesar 14,35 %  menjadi 21,2343 kW saja. Penelitian ini bertujuan mendapatkan probabilitas hubungan antara konsumsi energi listrik, frekuensi pada variable speed drive, putaran motor induksi dan nilai aliran udara pada cerobong exhaust fan. Nilai aliran udara exhaust fan tersebut akan disesuaikan dengan nilai aliran gas pembakaran yang dihasilkan oleh engine. Analisa optimasi motor exhaust fan ini sedianya akan menggunakan Matematic Analysis dan simulasi menggunakan simulink matlab sehingga diharapkan ada solusi untuk melakukan penghematan terhadap konsumsi daya motor, kemudian bisa diterapkan dalam semua pengoperasian motor yang ada di perusahaan.   Kata kunci : variable speed drive, motor induksi, exhaust fan                                                                                                                                            ABSTRACT              The exhaust fan is a rotary blade device which produces centrifugal force to remove exhaust gas from diesel fuel combustion during a full load test. With exhaust fans, the carbondioxide gases that generated by the diesel engine allows to be disposed quickly so that it does not fill the room and harm to every employee. The operation of  exhaust fan is carried out according to the engine test schedule. The exhaust fan is driven by a 3 phase induction motor of  30 kW with constant rotation. When testing the engine with a low Exhaust Gas flow value, the exhaust fan remains operated at rated speed. Operational exhaust fan with a constant speed like this will result in relatively high power consumption of the motor with the speed of change as needed. Considering the calculation results for C 18 engine Caterpillar capacity of 831 hp which previously required operational exhaust fan with 24,7927 kW of equal value for all engine models, after the use of VSD can be reduced by 14.35% to 21.2343 kW only. This study aims to obtain the probability of relationship between electrical energy consumption, frequency on the variable speed drive, induction motor rotation and the value of air flow in the exhaust fan chimney. The value of the exhaust fan air flow will be adjusted to the combustion gas flow value generated by the engine. The optimization analysis of this motor exhaust fan will be using Matematic Analysis and simulation using matlab simulink so it is expected there is a solution to make savings to motor power consumption, then it can be applied in all the motor operation in the company.   Keywords: variable speed drive, induction motor, exhaust fan


Author(s):  
Marek Cichocki ◽  
Ilona Salamonik ◽  
Marcin Bielecki ◽  
Ever Fadlun ◽  
Artur Rusowicz

Abstract The typical combined heat and power plants requires the introduction of additional heating medium. The alternative solution is the direct integration of the exhaust gases from heat engine. High temperature, surplus oxygen and low water content of the Gas Turbines exhaust gases enabled the successful integration at industrial scale as: preheated combustion air for industrial furnaces, heat source for drying and for absorption chillers. The article comprises the reference list for direct exhaust gas integration of GTs produced by Baker Hughes formerly GE), the processes overview, GTs selection criteria, as well as the review of documented GTs applications in process industry focusing on technical and economic considerations. Majority of referenced applications for industrial furnace are in the steam methane reformers used in fertilizer industry, as well as steam crackers in petrochemical industries. Several GTs were integrated with crude oil furnace in refinery. Direct drying utilizing exhaust gas from GT, is commonly applied in ceramic, wood derivative, pulp & paper and inorganic chemicals industries. Integrating GTs with absorption chillers was introduced to serve the district heating and cooling system. The described solutions allowed to reduce specific energy consumption by 7–20% or the costs of energy consumption associated with large volume production by 15–30%. The reduction of specific energy consumption allows to decrease the amount of CO2 emitted. The overall efficiency of cogeneration plant above 90% was achieved.


2018 ◽  
Vol 7 (4.36) ◽  
pp. 920
Author(s):  
Byshov N.V ◽  
Bachurin A.N ◽  
Bogdanchikov I.Yu ◽  
Oleynik D.O ◽  
Yakunin Yu.V. ◽  
...  

The aim of the article is to develop a method and a device for reducing the toxicity of exhaust gases of diesel engines and reducing noise taking into account the current mode of operation of the engine. This is done with the help of installing a liquid catalyst (LC) into the exhaust system, ensuring the processes of trapping, chemical bonding and neutralization of toxic components and soot particles in the aerosol chamber while the vortex flow is being processed by a neutralizing solution supplied under pressure. Then the flow is divided into phases and toxic components and soot are separated in the centrifugal swirl drop separator (SDS).The developed and tested design of an exhaust gas cleaning device installed instead of the standard D-120 engine exhaust system and an automated cleaning process control system make it possible to reduce the toxicity of exhaust gases (EG): nitrogen oxides by 40 %, hydrocarbons by 43 % and soot by 70 %. The noise level of its work in enclosed spaces was reduced by 16–22 %. The device also had low gas-dynamic resistance.The investigation methodology is based on the use of modern methods and measuring devices. Exhaust gas tester META “Autotest CO – CH – CO2 – O2 – λ – NOx” was used to measure the toxicity of exhaust gases. To measure smoking at the exhaust of the diesel engine, the opacity meter META-01MP was used. The gas flow velocity was measured with ATT-1004 thermo-anemometer, the noise level of the tractor was recorded with noise and vibration meter VSHV–003–M2, and the fuel consumption with SIRT-1 meter.Theoretical studies were carried out on the basis of the laws of gas dynamics, the modern theory of statistical analysis, and experiment planning techniques. When developing an experimental LC model, dependencies were obtained, which allow to achieve the optimal design and technological parameters of the wet cleaning system for diesel exhaust gases.The optimization of the design parameters and the processing of experimental data were carried out with the help of modern software using the methods of mathematical statistics using computers.The current methods of reducing the toxicity of engines consist primarily in improving the design of engines, in order to influence the nature of the working process, the use of alternative fuels and additives, exhaust gas recirculation, as well as installing various types of exhaust gas catalytic systems. Measures related to the introduction of constructive changes in engines require some major restructuring of the industry, which is difficult to achieve in modern conditions. Alternative fuels have not yet been widely used in agriculture. Therefore, today the most effective and acceptable means of achieving environmental standards is the installation of various mobile catalysts in the exhaust system, as well as devices for trapping soot particles. The use of this exhaust gas cleaning system for diesel engines functioning in enclosed spaces can significantly improve the working conditions of the personnel and have a slight effect on the power and fuel-economic performance of the power unit, reducing the power of the D-120 engine of the T-30 tractor equipped with an upgraded exhaust system when taking external speed characteristics averaged 1.6 %, the torque was 1.5 % and the increase in specific fuel consumption was 1.8 %.In this paper we used materials from scientific publications indexed by bibliographic abstract databases of Scopus and Web of Science.   


2019 ◽  
Vol 35 (4(102)) ◽  
pp. 43-109
Author(s):  
Jadwiga Szymańska ◽  
Barbara Frydrych ◽  
Elżbieta Bruchajzer

Exhaust emissions from diesel engines (SESD) are multi-component mixtures of chemical compounds resulting from incomplete combustion of fuel and engine oil. The toxic effect of exhaust gases is associated with the presence of toxic and carcinogenic compounds in them. GIS reports in 2019 that the number of employees employed in conditions constituting 0.1– 0.5 of MAC-TWA (applicable for exhaust emissions from diesel engines) in 2017 and in 2018 was 1071 and 986, respectively, while in conditions 0 , 5–1 MAC-TWA were 26 and 46, respectively. In the list of occupational diseases in the years 2013–2017, two cancers were registered: one bladder and one larynx (exposure to PAHs present in exhaust gases). In the clinical picture of acute exhaust poisoning, irritant effects on the mucous membranes of the eyes and upper respiratory tract predominate. Eye conjunctival irritation is considered to be one of the most sensitive indicators of exhaust gas exposure. Chronic poisoning is usually seen in people who have been exposed to work for at least several years. Functional and morphological changes in the respiratory system dominate. Prolonged exposure to high concentrations of exhaust gases has resulted in: accumulation of solid particles in macrophages, changes in lung cells, fibrosis and epithelial metaplasia. Exposure to exhaust fumes can exacerbate the symptoms of existing diseases, e.g. asthma, allergies. The results of epidemiological studies indicate a relationship between occupational exposure to exhaust gas emitted from diesel engines and the increased incidence of certain groups of cancers, mainly lung cancer and bladder cancer. Studies conducted on laboratory animals have shown that exposure to exhaust fumes emitted from diesel engines caused disorders of the respiratory, circulatory, nervous and immune systems. Mutagenicity tests showed positive responses in several Salmonella strains. Animal studies (prenatal and adult exposure) suggest that exposure to exhaust gas may affect male fertility. Annex III of Directive (EU) 2019/130 of the European Parliament and of the Council contains occupational exposure limit values amending Directive 2004/37 / EC. For exhaust emissions from diesel engines for an 8-hour working day, this value was set at 0.05 mg/m3 (measured as elemental carbon). After 1–2 hours of human inhalation exposure to concentrations of 75–225 µg/m3 (as elemental carbon), a decrease in respiratory function parameters and the occurrence of inflammatory changes in the lungs were observed. There is insufficient data on occupational exposure to exhaust emissions from new generation diesel engines. Therefore, it was proposed to adopt as the MAC-TWA value for exhaust emissions from diesel engines a concentration of 0.05 mg/m3 (measured as elemental carbon) included in the Directive 2019/130, without setting STEL and TLV-C. This article discusses the problems of occupational safety and health, which are covered by health sciences and environmental engineering.


Author(s):  
N Saravanan ◽  
G Nagarajan

Hydrogen is receiving considerable attention as an alternative fuel to replace the rapidly depleting petroleum-based fuels. Its clean burning characteristics help to meet the stringent emission norms. In this experimental investigation a single-cylinder diesel engine was converted to operate in hydrogen—diesel dual-fuel mode. Hydrogen was injected in the intake manifold and the diesel was injected directly inside the cylinder. The injection timing and the injection duration of hydrogen were optimized on the basis of performance and emissions. Best results were obtained with hydrogen injection at gas exchange top dead centre with an injection duration of 30° crank angle. The flowrate of hydrogen was optimized as 7.5l/min with optimized injection timing and duration. The optimized exhaust gas recirculation (EGR) flowrate was 20 per cent at 75 per cent load. The optimized timings were chosen on the basis of performance, emission, and combustion characteristics. The EGR technique was adopted in the hydrogen—diesel dual-fuel mode by varying the EGR flowrate from 0 per cent to 25 per cent in steps of 5 per cent. The maximum quantity of exhaust gases recycled during the test was 25 per cent (up to 75 per cent load); beyond that unstable combustion was observed with an increase in smoke. The brake thermal efficiency with 20 per cent EGR decreases by 9 per cent compared with diesel. The nitrogen oxide (NO x) emission in hydrogen manifold injection decreases by threefold with 20 per cent EGR operation at full load. The NO x emission tends to reduce drastically with increase in the EGR percentage at all load conditions owing to the increase in heat capacity of the exhaust gases. The smoke decreases by 80 per cent in the dual-fuel operation compared with diesel at 75 per cent load.


Sign in / Sign up

Export Citation Format

Share Document